
Bachelor thesis

Escuela Politécnica Superior

Formal design and implementation of a programming language

based on facets

Universidad Autónoma de Madrid

w
w

w
.u

am
.e

s

21
22

Ángel Alberto Carretero Ramos

Escuela Politécnica Superior

Universidad Autónoma de Madrid

C\Francisco Tomás y Valiente nº 11

UNIVERSIDAD AUTÓNOMA DE MADRID
ESCUELA POLITÉCNICA SUPERIOR

Bachelor as Doble Grado en Ingeniería Informática y Matemáticas

BACHELOR THESIS

Formal design and implementation of a
programming language based on facets

Author: Ángel Alberto Carretero Ramos
Advisor: Juan de Lara Jaramillo

May 2022

Some rights reserved

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 License.
http://creativecommons.org/licenses/by-nc-sa/3.0/

You are free to share (copy, distribute and transmit) and to modify the work
under the following conditions:

• You must attribute the work in the manner specified by the author
or licensor (but not in any way that suggests that they endorse you or
your use of the work).

• You may not use this work for commercial purposes.

• If you alter, transform, or build upon this work, you may distribute
the resulting work only under the same or similar license to this one.

RIGHTS RESERVED
© May 19 2022 by UNIVERSIDAD AUTÓNOMA DE MADRID
Francisco Tomás y Valiente, nº 1
Madrid, 28049
Spain

Ángel Alberto Carretero Ramos
Formal design and implementation of a programming language based on facets

Ángel Alberto Carretero Ramos

PRINTED IN SPAIN

http://creativecommons.org/licenses/by-nc-sa/3.0/

Acknowledgements

This project was done under the scholarship “Beca de Colaboración” 2021–2022 from “Ministerio

de Educación y Formación Profesional”.

I want to explicitly thank my tutor, Juan de Lara, for his dedication to this project. Not only did he

gave me lots of corrections, but most importantly he gave me complete freedom. Even when I veered

into a new idea, even when I insisted on doing everything by hand despite of the time constraints, he

was always helpful and supportive. Additionally, I want to also thank him for providing me with the

opportunity of assisting the meetings of the Research Group here at UAM.

v

Abstract

Maintaining software is becoming increasingly difficult due to the constant stream of technological

advances and the pressure to ship as fast as possible. Undoubtedly, a crucial and undervalued aspect

is producing and maintaining good documentation. In this work, we will analyze the problem through

the lens of a concrete example of a Machine Learning pipeline, where a set of operations have to

be called in a predefined order to correctly transform the data; an order which is, precisely, poorly

documented. The consequence is that we do not know if a function can be refactored, if we have to call

it, or something as fundamental as how does the function change the data.

Throughout this text we will develop a generic solution starting from this simple example. A pro-

gramming language will be designed and implemented that, thanks to the paradigm of facets and its

static type system, can solve the example problem in an elegant and pragmatic way.

The second objective, motivated by the academic nature of this work, is learning. Because of it,

the interpreter will be developed from scratch and, in the text, we will alternate between the theoretical

development of the language and the challenges of the implementation. On top of that, we will use Rust

which will allow us to justify several design decisions, and to delve into a less common programming

paradigm.

The result is an interpreter that contains: an agnostic parser library, the grammar of the language,

a static type system, the interpreter itself and various additional tools. Lastly, the validation will consist

of a bespoke test framework with different test cases.

Keywords

Facets, interpreters, programming languages, parsing, typechecking, parser combinators, seman-

tics

vii

Resumen

Mantener software es una tarea cada vez más complicada debido a los constantes avances tec-

nológicos y al vertiginoso ritmo de desarrollo. Sin duda un aspecto crucial y a la vez menospreciado es

producir buena documentación y actualizarla. En este trabajo analizaremos este problema a través del

ejemplo concreto de una pipeline de Aprendizaje Automático en la que, para transformar correctamente

los datos, tenemos que llamar a funciones en un orden determinado, un orden que está escasamente

documentado. Esto lleva a que no sepamos si se puede refactorizar una función, si hace falta llamarla

o algo tan fundamental como qué añade a los datos.

A lo largo del texto desarrollaremos una solución genérica partiendo de este sencillo ejemplo. Se

diseñará e implementará un lenguaje de programación que, gracias al paradigma de las facetas y a un

sistema de tipado estático, pueda resolver este problema de forma elegante y pragmática.

El segundo objetivo, motivado por la naturaleza académica de esta empresa, es el aprendizaje. Por

ello, el intérprete se desarrollará desde cero y alternaremos entre el desarrollo teórico del lenguaje y

los retos de la implementación. Además, usaremos Rust lo que nos permitirá ahondar en un paradigma

de programación menos habitual y justificar varias decisiones de diseño.

El resultado es un intérprete que contiene: una librería para parsear la gramática del lenguaje,

un sistema de tipado estático, el intérprete en sí y distintas herramientas auxiliares. Para finalizar, la

validación consistirá en un sistema propio de pruebas con multitud de casos de uso.

Palabras clave

Facetas, intérpretes, lenguajes de programación, parsear, sistemas de tipado, parser combinators,

semántica

ix

Table of Contents

1 Introduction and Background 1

1.1 Problem . 2

1.2 Facets . 3

1.2.1 Expressiveness and performance considerations . 4

1.2.2 How do facets solve the original problem? . 4

1.3 Related work . 5

1.4 Background: Programming Language Theory Concepts . 6

1.5 Objectives . 8

1.6 Document organization . 9

2 Design of the language syntax 11

2.1 Syntax rules . 11

2.2 Design decision: Null . 13

2.3 Basic usages . 13

2.4 Original problem revisited . 14

3 Parsing 17

3.1 Simple parsers . 18

3.2 Some combinators . 19

3.2.1 Advanced combinators: Macros over the AST . 20

3.3 Complete example: Parsing comments and whitespace . 21

4 Typechecking 23

4.1 Rules . 23

4.1.1 Simple typechecking . 25

4.1.2 Facets . 26

4.2 Implementation . 27

4.2.1 Case study: Typechecking a facet initialization . 28

4.2.2 Case study: Return statements . 29

5 Interpreter 31

5.1 Rules . 31

5.2 Implementation . 33

5.2.1 Case study: Environment . 33

5.2.2 Case study: Facet fields . 34

5.2.3 Case study: Return statements . 35

xi

6 Implementation and validation 37

6.1 Validation . 38

7 Conclusions and future work 39

7.1 Future work: generics . 40

Bibliography 41

Appendices 43

A Formal grammar rules 45

B Introduction to Rust 47

B.1 References . 47

B.1.1 Lifetimes . 48

B.1.2 Borrow checker . 48

B.1.3 Traits . 49

B.2 Generics . 50

C Advanced topics on parser implementation 51

C.1 The Parser trait . 51

C.1.1 What is really a closure? . 51

C.1.2 Passing arguments to functions . 53

C.1.3 The Fn trait vs the fn type . 53

C.1.4 The Copy trait . 54

C.1.5 The Parser trait . 54

C.2 Grammar rules variations and effect on performance . 55

D CLI usage 59

xii

Lists

List of codes

1.1 Example of getting recommendations for a user in pseudo-Java. 2

1.2 Employee facet . 3

1.3 Example syntax to define a Person facet with automatic constraint based transforma-

tions. 4

1.4 Example program with nested closures. 6

1.5 Example code. 7

2.1 Syntax specification for our language. 12

2.6 Original problem implementation using facets. 15

2.7 Wrong call order with output from the interpreter. 15

2.8 Accessing a field that does not exist at that point in time. 16

3.1 peek function and the struct Information where we hold the state. 18

3.2 Function that parses a character that matches the supplied condition. 19

3.3 The and combinator takes two parsers and returns only if both parsers have matched

the same input and produced the same output. 19

3.4 tuple implementation for only three elements. 20

3.5 Tuple trait and function that performs the dispatch. 21

3.6 Defining a combinator the consumes the whitespace and comments around the given

parser. 22

3.7 Example of how “junk” is used in parsing a block. 22

4.1 Typechecking specification for our language. 24

4.2 Example program with type annotations. 26

4.3 Type enum. 27

4.4 Trait for typechecking. 28

4.5 Implementation for facet initialization in the type system. 28

4.6 When we encounter a function definition, we bind it. 30

4.7 In a return statement, we get back the function we are in. 30

5.1 Evaluation semantics specification for our language. 32

5.2 Executing a function call in the interpreter. 33

5.3 The closure stores a reference to n and, when n is changed, it is changed also for the

closure. 33

xiii

5.4 Definition for our tree of environments. 34

5.5 Looking up a field in the environment. 35

5.6 Executing return statements and bubbling up the value. 36

7.1 Example of the usage of generics, and how the natural problem of adding facets to

arbitrary types can be modeled. 40

A.1 Formal grammar rules in BNF. 45

B.1 Example where we specify that the output lifetime is maximum ’a. 48

B.2 Excerpt from the language prelude of the trait used to test for equality. 49

B.3 Implement trait A for all types that already implement B and C. 49

B.4 Example where lifetime parameters are used alongside generics. 50

C.1 Example program with nested closures. 52

C.2 Attempting to call a combinator with the same parser twice. 54

C.3 Parser trait and implementation for closures/functions. 54

C.4 Rules for binary expressions, left recursive. 55

C.5 Rules for binary expressions, non left recursive. 55

C.6 Final set of rules for binary expressions. 56

List of figures

1.1 Employment, employee and person facets and their relationship. 3

1.2 Nested list of scopes at line 8. 6

1.3 AST from Listing 1.5 created using the graphing tool. 8

4.1 Nested list of scopes at line 4. 26

C.1 Close up of the stack frame of a function (x86 convention). 52

C.2 The stack as of line 8 in Listing C.1. 52

C.3 The stack after returning from function b in Listing C.1. 53

C.4 Simplified stack frame for parsing 2 == 2 . 56

List of tables

6.1 Lines of code (LOC) absolute and relative per project module. 38

xiv

1
Introduction and Background

The constant change of requirements, the pressure to ship as fast as possible and technological ad-

vances surfacing every month, are several of the reasons why software today is less maintainable than

ever before. One of the, if not the most neglected task, is writing documentation and, even more so,

keeping it up to date. Everyone knows it is crucial to do so and, yet, developers never find enough

time to do it. For example, picture a Machine Learning pipeline where data is taken in and transformed

many times until the result is obtained. What happens if we want to remove one transformation or, if we

want to only call a subset of the methods. It happens that we have to rely on outdated comments and,

probably, look manually in the code to see what each function expects, so that we can call them in the

right order.

In this work, we set out to design a new programming language to prove that the problems in the

example can be solved using the correct paradigm. We will use the information at the type level to both,

document the code, and verify its correctness. As an added benefit, because the documentation is part

of the code itself, it cannot get outdated as was the case with comments.

The idea is to design and develop a language slowly from first principles, starting from this concrete

example and generalizing the solution. Along the way, we will also cover the necessary theory. In

particular, because facets are more of a niche idea, we will detail the semantics of how they work

precisely. Additionally, because designing and implementing a language is no easy feat, there will be

countless discussions permeating the document justifying the rest of our choices.

Lastly, the principle that guides this whole endeavour is pragmatism. We want to create as little

friction as possible for the programmer and a solution that is both performant and useful. The second

main motivator is learning. Creating a compiler is a great exercise in itself and as a way to learn

the host language by testing its limits. In that spirit, we have chosen Rust to delve into a less common

programming model. In summary, in this work we are going to interleave programming language theory,

learning about Rust, and solving the difficult programming challenges that the interpreter poses.

1

Introduction and Background

1.1 Problem

The inspiration for creating a new language came originally from getting recommendations for a given

user in an online business where data is spread across different services. As stated before, it involved

transforming the data through several steps that had to follow one of many possible orders. The issue

is that this was documented using comments and not enforced at the type level. That, coupled with not

up-to-date documentation, made it very challenging to work with the code base. For a small recreation

in pseudo-Java, have a look at Listing 1.1.

1 Data getUserRecommendations(String userid) {

2 // Data is a container, a Map<String, Object> for all possible attributes.

3 // For example the username would be key: "username" and the values will

4 // be of type String.

5 Data data = new Data();

6 data.addColumn(USERID, userid);

7 // Log the username. Notice that we have to cast and hope that the column

8 // exists.

9 System.out.println((String) data.getColumn("username"));

10 // Queries the service to check if the id is valid and resolve the early

11 // data such as username used by services down the line.

12 userContext.featurize(data);

13 // Adds some hints such as if the user is suspected to be a child.

14 userHints.featurize(data);

15

16 parallel {

17 // Different services

18 userRecommendationsFactory.get(ServiceAEndpoint).featurize(data);

19 userRecommendationsFactory.get(ServiceBEndpoint).featurize(data);

20 }

21 // Gets the affinity to the shop featured items

22 userTopItemsRecommendations.featurize(data);

23 return data;

24 }

Listing 1.1: Example of getting recommendations for a user in pseudo-Java.

The code contains, at least, the following problems:

1. There is no type information on what gets added to the Data map at each step. That means that

if, for example, we wanted to add a specific column, we would have to check all the code manually

to see which function does it.

2. If we wanted to call a function that requires another three calls before it, we would have no way of

knowing but trial and error.

3. Even though it is not shown in the short snippet, because there is no type information, we have to

2 Formal design and implementation of a programming language based on facets

1.2. Facets

check the constraints for each function manually using tests.

1.2 Facets

The plan is to add some dynamism, namely facets, to the otherwise “stiff” type systems, such as

Java’s in this case. We take the term facet from the paper [1]. Informally, it is a way of creating more

dynamic objects by letting them get and drop facets which lets us model the real world more closely.

Individually, each facet contributes with a type and fields to the objects which holds it. The canonical

example is the relationship between being a Person and being an Employee. We are always people but

we are sometimes employed. Instead of having to deal with two types of objects and association or

composition, we have an Employee facet added to the Person. Later, we can drop it and still have the

same Person.

1 addFacet homer

2 dayJob: Employment.Employee with {

3 name = fullName [equality]

4 salary = 15000

5 ssNumber = 12345

6 active = true

7 }

8 nightJob: Employment.Employee with {

9 name = fullName [equality]

10 salary = 16400

11 ssNumber = dayJob.ssNumber [equality]

12 active = dayJob.active [equality]

13 }

Listing 1.2: Employee facet. Reproduced from listing 5 in [1].

Figure 1.1: Employment, employee and person facets and their relationship. Visual result of List-

ing 1.2. Reproduced from figure 5 in [1].

In the paper they present several techniques that allow for more expressiveness such as having one

Ángel Alberto Carretero Ramos 3

Introduction and Background

facet derive fields from another (see Figure 1.1). For example, we might derive automatically the age

till retirement for the Employee facet by looking at the Person age. The other fascinating technique is

adding these facets automatically based on conditions. For example, if a person’s age is greater than

17, we make them an Employee (see Listing 1.3) and when their age is greater than 67, we remove the

facet because they retire.

1 var p : Person := new Person;

2 p.age := 23; // implicitly creates an Employee facet (as p.age > 17)

3 p.salary := 15100; // OK, as p has now an Employee facet

4 p.age := 16; // p loses its Employee facet (as p.age <= 17)

5 p.salary := 21000; // Error! p has no Employee facet

Listing 1.3: Example syntax to define a Person facet with automatic constraint based transforma-

tions. Reproduced from listing 12 in [1].

1.2.1 Expressiveness and performance considerations

Facets the way we have presented them are very expressive and lets the programmer model a lot

of situations with ease and elegance. The problem is that there is usually a balance between being

expressive and being performant. For example, adding and removing facets automatically based on

constraints is very expressive but it would put a big toll on performance. First, we need to add a

runtime check to know when the constraints are met, which means possibly checking them after every

modification to the object. Secondly, if we were to create a concurrent programming language, how

would we deal with these automatic modifications in the context of different threads? And, how would

we deal with locks?

Performance and explicitness are the main reasons we have chosen to implement only a subset

of [1]. Namely, we would like to add or remove facets explicitly. We will also not add various other

advanced features such as deriving fields because they are not necessary for our use case. What will

be crucial is that we implement a static type system that helps the programmer deal with the intricacies

of changing objects.

1.2.2 How do facets solve the original problem?

The idea is to make the functions add facets, tags in this case, to the Data container. That way, we

can say that a function needs facets A+B+C and produces an item with the extra facet D. For example,

we may identify A with having the USER_ID column and D as having the username. Then, the first call

receives A and produces A+D.

Under this paradigm, we now have all the information about the calling order at the type level. It also

serves as documentation because it clearly states the form of the data coming in and out. Furthermore,

4 Formal design and implementation of a programming language based on facets

1.3. Related work

the code is very similar to the original except for the new types, which make the transition trivial, and

the fact that we no longer need tests makes the time investment worth it.

1.3 Related work

We have already studied how our solution is based on facets as presented in [1] trading expressiveness

for performance. In this section we set out to find other languages to further compare our approach.

Most of the languages that employ a paradigm similar to facets use the role terminology. In the parlance

of role-oriented programming, a facet is a role and the object that contains the facet is said to be a player.

Normally, there is also a notion of an institution that grants roles, for example a school may grant the

role teacher.

Even though there are differences, roles are pretty similar to facets and much more common in

the literature. For its abundance we will select and compare several role programming languages.

The first ones are: powerJava ([2]) and OT/J ([3]). In both languages, the focus is in modelling the

relation between role and institution. Instead, in our language, we do not have a notion of institution,

but focus on acquiring and dropping facets dynamically, a use case not supported by neither of them.

Additionally, there is again the tradeoff between expressiveness and performance, the former being

pursued by both, OT/J and powerJava, and the latter by us. In its defense, powerJava, but not OT/J,

does favour explicitness by requiring that the role is mentioned and not performing type conversions,

sharing at least one of our goals.

The third contender is a full-blown programming language: Raku, formerly known as Perl 6. Raku

implements most of OOP concepts such as interfaces, traits and mixins using roles as explained in [4].

Their definition of role is strikingly similar to ours where a role is a combination of fields and methods that

can be added to objects, and the change is reflected in the type system with a notation close to ours.

Apart from being a mature programming language with a complete ecosystem, our main difference

resides in how facets/roles are intended to be used. For example, in Raku you may not drop a facet

from an object, while it is essential for our use cases. Fundamentally, their objectives are to model

OOP concepts using roles while we try to leverage them to add dynamism to the type system so, even

though, syntax-wise both languages are pretty similar, the incentives are different.

There are many more projects such as SCROLL ([5]), JavaStage([6]) or EpsilonJ ([7]), but their

approaches are a combination of the above ideas. One in particular deserves a mention, SCROLL,

because it achieves role programming by creating a library in Scala. Meaning it does not need to

bootstrap a lexer/parser nor an interpreter because it works by rewriting Scala constructs directly.

Ángel Alberto Carretero Ramos 5

Introduction and Background

1.4 Background: Programming Language Theory Concepts

In this section, we will present the usual jargon alongside the most important programming language

theory concepts, which uncoincidentally, will be ubiquitous in the rest of this work.

• Functional language: A language is said to be functional if functions are first class objects. That

is, they can be used in the same way that all the other types; for example, by passing a function

as an argument to another function.

• Closures: A closure is a function that closes over its environment, it captures it. For example, in

Listing 1.4 || is used to create a closure with 0 arguments (line 4). In the case of the first fun (line

4), it is capturing the variables a and b in the topmost environment (Figure 1.2) while the second

fun (line 6) does not capture anything.

It is important to note that not all languages have closures because of the complexity they bring

to the language and to the memory allocation (for more information check subsection C.1.1).

• Scoping: A scope or environment is an abstract identification between all defined identifiers and

their values at any point in the code. Normally we like to visualize the scope as nested envi-

ronments 1. See Figure 1.2 for an example program and its environment representation. For

instance, note how a and b are defined in the outer function, lines 2, lines 3, while c is defined in

the inner closure, line 5. Also observe that there are two identifiers called fun in the environment

and that we will always return the first one starting from the bottom. This is called shadowing and

for more information check [8].

1 fn main() {

2 let a = 2;

3 let b = 3;

4 let fun = || {

5 let c = 4;

6 let fun = || {

7 let d = 5;

8 println!("{}", d);

9 };

10 fun();

11 }

12 fun();

13 }

Listing 1.4: Example program with nested

closures.

a = 2
b = 3
fun = <closure>

c = 4
fun = <closure>

d = 5

Figure 1.2: Nested list of scopes at line 8 for program

Listing 1.4.

1See [9] for a more in depth explanation.

6 Formal design and implementation of a programming language based on facets

1.4. Background: Programming Language Theory Concepts

Inadvertently, when we think of scoping, we think of lexical scoping because that is what we are

used to 2. However, we still need to define it more precisely. Lexical scoping means that a variable

can only be referred to in the scope it was defined or deeper, and only after it has indeed been

defined. For example, in Listing 1.4 we can only refer to d in line 8.

• Typing: We can colloquially classify type systems into the following categories:

– Strongly typed: Variables have one type and one type only. Examples: Rust, Java, C 3,

Lisp, Python, etc.

– Weakly typed: A variable can be coerced into a different type depending on the context. A

good example is PHP where we can pass a string into a function that requires an int and the

language will try to perform the conversion. For example, the string “1” would be coerced into

the integer 1.

– Static type-checking: Every variable must have a known type at compile time. The type

safety of a program is thus verified at compile time. Roughly speaking, type safety checks that

our program satisfies a set of rules such as only summing 4numbers to numbers. Examples:

Rust, Java, C, Go, etc.

– Dynamic type-checking: The type safety is checked at runtime. For example trying to sum

a string and an int will provoke a runtime error. Examples: Python, Ruby, Lisp, JavaScript,

etc.

• Abstract Syntax Tree (AST): is a tree representation of the syntactic structure of a program.

Let’s take an example program written in our language and generate an AST representation using

the graphing tool we created (Appendix D). For example, Figure 1.3 is the representation of

Listing 1.5.

1 let x: int = 3;

2 let y: int = x + 2;

3 print(y);

Listing 1.5: Example code.

• Garbage Collector (GC): A garbage collector is a form of memory management employed in

languages such as Python, Java or Go. It is an automatic technique unlike manually fiddling with

allocs in C. We usually say that the language ships a runtime which is the overhead that we have

to pay for “forgetting” about memory management. That is, even if our user program is compiled,

it has extra functionality that is running in the background cleaning the unused memory. For

example: every variable could have a counter that increases or decreases each time it is shared,

2Other types such as dynamic or mixed scoping are niche and/or have fallen into disuse.
3It can be argued that being able to cast pointers into numbers to perform arithmetic and bypass the type system is a form of weak typing.
4Once again, the sum operator (+) may be overloaded to work to concatenate strings. This is only an illustrative example and the rules obviously

depend on the language.

Ángel Alberto Carretero Ramos 7

Introduction and Background

Figure 1.3: AST from Listing 1.5 created using the graphing tool.

and when it reaches 0, the variable is freed (Reference Counting [10]).

In the case of Rust, there is no overhead and the memory management is automatic [11, sec.

4.1]. It is thanks to the strict semantic of the borrow checker that we are able to know where a

variable has to be freed at compile time.

1.5 Objectives

As stated in the motivation of the document, one of the objectives is to learn as much as possible which

is why we decided to implement the interpreter from zero without the aid of external libraries. The

broken down objectives considering design and implementation are:

• Formal syntax, typing, and semantic specifications for our language. The three of them together

completely determine how our language is written and interpreted. In the text, natural language

explanations will accompany the formal verbiage.

• A library of general parser combinators [12]. By creating a standalone module we get better

separation of concerns and encapsulation.

• A parser for our language’s grammar using our agnostic parser combinator library.

• A simple static type-checker for the rules we laid out.

• A “tree-walk” interpreter where the AST is not transformed nor compiled but the interpreter tra-

verses it.

• To help aid debugging, we will develop a graphing backend where the AST is translated into the

DOT 5format and rendered using Graphviz 6.

• To further aid development, a small and simple testing framework will be created to check for

regressions automatically.

5https://en.wikipedia.org/wiki/DOT_(graph_description_language)
6https://graphviz.org/

8 Formal design and implementation of a programming language based on facets

https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://graphviz.org/

1.6. Document organization

All of the programming will be done in Rust. For a brief introduction see Appendix B, and for more

in-depth information see [11].

1.6 Document organization

In the beginning of the chapter we gave a brief overview of the narrative structure of the document.

The objective of this section is to present the reader with a schematic description followed by a detailed

account.

Roughly speaking, the work is divided into 4 parts excluding this one where each of them is con-

cerned with one of the areas of creating an interpreter: design, parsing, typechecking and interpreting.

While the design follows a standard structure, the rest of the chapters are further subdivided into two

parts: theory and implementation.

For the more detailed account, we will follow the order of the document. Starting from the design

chapter (chapter 2), where, as the name indicates, the language that solves our quintessential problem

will be designed. First, the syntax will be laid down in section 2.1 and, then, we will justify our design

decisions in section 2.2. Next, we will be able to revisit the problem for the last time and give a complete

implementation in section 2.4, where we will further emphasize the advantages in our solution.

In the rest of the text, we will implement an interpreter in three distinct stages: parsing (chapter 3),

typechecking (chapter 4) and interpreting (chapter 5). When discussing parsing, we will first review

the different approaches and, then, the advantages and disadvantages of each one to finally settle

on parser combinators. In the next section, we explain the how they work and motivate it with a few

examples in section 3.2. We will close the section with an illustrative excerpt from the implementation

in section 3.3.

After parsing comes typechecking (chapter 4). We will start by laying down the most important rules

for our language (section 4.1). To further explain them and to aid the reader in understanding the new

formalism, we will also explain the rules in plain text. We will end the chapter with a high level overview

of the main challenges of the implementation through a few case studies (section 4.2).

In the last chapter, we will tackle the final challenge: the interpreter itself. Because the formalism

was already explained in the previous chapter, we will plainly state the rules in section 5.1 with no

further explanation. For the remainder we will, once again, explain lightly the implementation using a

few examples (section 5.2).

To finalize, a brief overview into how the project is validated and tested is presented in chapter 6,

and the general conclusions are given in chapter 7.

Ángel Alberto Carretero Ramos 9

2
Design of the language syntax

Now that the jargon has been explained, we can state the most important characteristics for our lan-

guage:

• It is functional.

• It is strongly typed and has static type checking, albeit a really simple one.

• It has closures.

In this chapter, we will design the syntax for a language that satisfies these characteristics and ad-

dresses the problem described in section 1.1. First, we will specify the syntax and give several exam-

ples of valid programs that each illustrates a feature of our language. Lastly, we will discuss some of

the design decisions that conditioned our choices for the syntax.

2.1 Syntax rules

To closely model a collection of facets, we are going to represent the types and objects of our language

as sets. For example, an object having facets A and B would be t = {A,B} with type T = {A,B}. Even

though we use the same symbols for both cases, the distinction will be clear based on the context.

We include the most important constructs in our language below. For the full grammar rules, consult

Appendix A. The grammar contains broadly three categories: types, terms and values. The difference

between the last two is that terms are interpreted into values which cannot further be reduced. We

will see it in detail in chapter 5. The rest of the formalism such as closures will be further explained in

chapter 4.

Syntactic forms

T ::= (types) (2.1)

int, bool, nil, str (primitive types) (2.2)

11

Design of the language syntax

F1 + ...+ Fn (derived type {F1, ..., Fn}) (2.3)

facet{s1 : T1, ..., sn : Tn} (facet type) (2.4)

(Γc,fn(x1 : T1, ..., xn : Tn)->R) (closure type) (2.5)

v ::= (values) (2.6)

true, false, nil, <number> (constants) (2.7)

(Γc,fun(x1, ..., xn) b) (closure) (2.8)

ΣiFi{s
i
j : v

i
j}1≤j≤ni

(derived value) (2.9)

t ::= (terms) (2.10)

v (values) (2.11)

f(t1, ..., tn) (function application) (2.12)

if b1 b2 else t3 (if else) (2.13)

if t1 t2 (if) (2.14)

{t1;...;tn} (block) (2.15)

fun(x1:T1, ..., xn:Tn) b (function) (2.16)

facet{s1 : t1, ..., sn : tn} (facet initialization) (2.17)

let x: T = t; (let binding) (2.18)

Listing 2.1: Syntax specification for our language.

Observe a few key points:

• Rule 2.2. The primitive or pre-defined types are: int , str , bool , and nil .

• Rules 2.3 and 2.4. The type of a facet contains the names and types of its fields:

facet{ s1 : T1, ..., sn : Tn } ,

and a derived type is a combination of these facets.

• Rule 2.5. The type of a function (without its environment) is:

fn(TypeArg1, ..., TypeArgN) -> RetType

• Rules 2.12 and 2.17. Roughly speaking, every time an item has to be evaluated, a term is used.

For example, when initializing a facet each field is set to a term, or when a function is called, each

argument is a term. Later, in the interpreter, we will see that terms are eagerly evaluated into

values which are then stored or passed on.

12 Formal design and implementation of a programming language based on facets

2.2. Design decision: Null

2.2 Design decision: Null

As it can be seen in the specification (section 2.1), we have both a null type and a null value that we call

nil. Deciding whether to include null in your language is a difficult choice. The issue is serious enough

that Tony Hoare, inventor of null in 1965, recently 1called null his “billion dollar mistake”.

Why then is null prevalent across so many languages? The answer is convenience. What makes

null special is that it can pass as any type. For example, in C it is standard that when an operation fails

it returns a null pointer instead of a valid one. The problem is that the programmer is not forced to check

if the return value is null because it is the same type; and this creates a whole class of bugs 2.

Creating a language without null is no easy task and usually revolves around providing a version

of Haskell’s Either 3type. Basically, the idea is to handle errors using monads; in this case, using,

arguably, the simplest one. Modeling errors this way is more of an advanced topic and we will not delve

into the details in this work. We will be satisfied knowing that it is possible to replace null and evade its

pitfalls.

Returning to our task, why then do we have null in our language? It is because null conflates two

ideas: the one we described, and expressing that no value is produced. For example, under this point

of view, statements “return” null, and the same thing happens for functions with no return type, while

loops, etc. The technique of not having null per se, but what is called a unit type, is widely used in

functional programming languages: for example Haskell and Rust both use the () 4to model it.

2.3 Basic usages

In this section, four short programs will be presented to exemplify the abstract syntax rules we have

seen. In the first example, Listing 2.2, we can see the different control structures: if, while, return, and

function calling. Further notice that a function is defined by a standard let expression (line 1). In the

second example, Listing 2.3, we can see how facets are defined (lines 1 to 5), and how objects take

and drop them (lines 9 and 10 respectively). In the next one, Listing 2.4, we can see how @ combines

objects by adding all the facets (line 10), and how fields are accessed (lines 11, 12). More important is

the syntax used for disambiguating when two facets have a field with the same name, ::<facet> .

Lastly, in Listing 2.5, we can see how field assignment works.

1https://web.archive.org/web/20220307130953/https://www.infoq.com/presentations/
Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

2https://owasp.org/www-community/vulnerabilities/Null_Dereference
3https://hackage.haskell.org/package/base-4.16.0.0/docs/Data-Either.html
4https://doc.rust-lang.org/std/primitive.unit.html

Ángel Alberto Carretero Ramos 13

https://web.archive.org/web/20220307130953/https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://web.archive.org/web/20220307130953/https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://owasp.org/www-community/vulnerabilities/Null_Dereference
https://hackage.haskell.org/package/base-4.16.0.0/docs/Data-Either.html
https://doc.rust-lang.org/std/primitive.unit.html

Design of the language syntax

1 let print_n = function(n: int) {

2 if n < 0 {

3 return;

4 };

5 let i = 0;

6 while i < n {

7 print(i);

8 i = i + 1;

9 }

10 };

11 print_n(5); // 0,1,2,3,4

Listing (2.2) Flow control structures: while, return, if, and func-

tion calling.

1 facet A {

2 a: int,

3 }

4

5 facet B {

6 a: int,

7 }

8

9 let x = A { a: 2} @ B { a: 3};

10 let y = x.drop::A();

11 print(y); // {B {a:3}}

Listing (2.3) Droping a facet returns a copy of the rest of the

object.

1 facet A {

2 a: int,

3 }

4

5 facet B {

6 a: int,

7 }

8

9 let x = A { a: 2};

10 let y = x @ B { a: 3};

11 print(y.a::A); // Facet A: 2

12 print(y.a::B); // Facet B: 3

Listing (2.4) Combining the facets of two objects, accessing the

field by disambiguating the name, initializing facets.

1 facet A {

2 a: int,

3 }

4

5 facet B {

6 a: A,

7 }

8

9 let x = B { a: A{ a: 3 } };

10 x.a::B = A { a:-1 };

11 print(x.a::B.a::A); // -1

12 print(x.a.a); // -1

Listing (2.5) Accessing a nested field with facets, initializing

facets.

The tests directory contains many more edge cases and uses. For more documentation on how to

run the tests and interpreting the results, see Appendix D and chapter 6.

2.4 Original problem revisited

We can implement a subset of the original problem to see how we might solve the problems laid down

on section 1.1.

14 Formal design and implementation of a programming language based on facets

2.4. Original problem revisited

1 // Types:

2 facet Data {

3 }

4 facet U {

5 username: str

6 }

7 facet UC {

8 context: str

9 }

10 // Functions:

11 let addUserId = function(data: Data, id: str, val: str) -> Data+U {

12 data @ U { username:val }

13 };

14 let addUserContext = function(data: Data+U) -> Data+U+UC {

15 data @ UC { context:"mock call" }

16 };

17

18 let getUserRecommendations = function(userid: str) -> Data+U+UC {

19 let data: Data = Data {};

20 let data: Data+U = addUserId(data, "USERID", userid);

21 // Log the username. Notice that we dont need to cast because of the new

22 // facet and we can just get the field safely.

23 print(data.username);

24 let data: Data+U+UC = addUserContext(data);

25 data

26 };

27 getUserRecommendations("test");

Listing 2.6: Original problem implementation using facets.

If we recapitulate over the pain points again: now there is enough information at every step of the

program to determine if a call is valid. Furthermore, we know which fields are available at every step.

All of this using the type system that guarantees all constraints at compile time.

What happens if we were to call the functions in the wrong order in our implementation?

19 // ...

20 let data: Data = Data {};

21 let data: Data+U+UC = addUserContext(data);

22 let data: Data+U = addUserId(data, "USERID", userid);

23 // ...

Listing 2.7: Wrong call order with output from the interpreter.

>>> [TYPE ERROR] Expected arg types to be: (Data+U), got Data.

Ángel Alberto Carretero Ramos 15

Design of the language syntax

If we were to try to instead access the field at the wrong time a similar error would appear.

19 // ...

20 let data: Data = Data {};

21 print(data.username);

22 let data: Data+U = addUserId(data, "USERID", userid);

23 // ...

Listing 2.8: Accessing a field that does not exist at that point in time.

>>> [TYPE ERROR] Field data.username does not exist.

These errors serve two purposes. First warning the programmer that the program is not correct at

compile time, and, second, serving as live documentation that needs to be forcefully updated with the

code. It is after all the most powerful incentive against documentation rot.

16 Formal design and implementation of a programming language based on facets

3
Parsing

Parsing is taking free-form text, a text file representing our program, and translate it into a syntactic

structure that encodes the relations and the semantic meaning, an AST. In plain words, taking a text file

and transforming it into a well-formed data structure or throwing an error.

In this chapter we will first give a brief overview about parsing in general. Then, we will explain a

concrete technique: parser combinators. To better understand the theory, we will interleave examples

from our own library. Lastly, we will present the complete implementation of a moderately difficult parser.

There are several techniques that can be used to develop parsers:

• Handmade. Most serious languages 1employ a bespoke parser that can be customized for their

needs: expressiveness, error checking, speed, etc. The most common technique and the one

proposed on [8] is a recursive descent parser, because they are both performant, easy to code,

and maintain.

• Flex, Bison, ANTLR 2et al. These tools take a formal grammar directly and produce the parser.

There are two problems: it is hard to tweak to your liking and, from an academic point of view,

there is not much to learn from using these tools.

• Parsing combinators 3. The brilliant idea is to use function composition as the fundamental oper-

ation and defer the execution (see [9] and [13]). Each parser is a function and combinators take

several functions and combine them. There are two advantages: they are more elegant as they

promote reusability and composability, and are written in the host programming language (not like

Bison/ANTLR). They also have disadvantages: working with a higher level of abstraction can lead

to complex code, error reporting is more difficult, debugging is also harder and performance is

usually worse.

For the interpreter we will choose parser combinators because we can learn a lot by creating our own

1See https://gcc.gnu.org/wiki/New_C_Parser for GCC, https://clang.llvm.org/docs/InternalsManual.

html#the-parser-library for Clang.
2https://www.antlr.org/
3See [14] for a good introduction.

17

https://gcc.gnu.org/wiki/New_C_Parser
https://clang.llvm.org/docs/InternalsManual.html#the-parser-library
https://clang.llvm.org/docs/InternalsManual.html#the-parser-library
https://www.antlr.org/

Parsing

little library from scratch. It is also a superb programming exercise because, working within functional

code in Rust, forces the programmer to understand how expressiveness is hindered by performance

and explicitness.

3.1 Simple parsers

In this section we will see how to create some simple parsers in Rust. The most basic function is peek.

It looks at the input and returns the next character without consuming it or error if there is no more input

(see Listing 3.1). We also create a struct called Information that holds the state: the reference to the

input, current index and line (used for error reporting purposes). We avoid shared state and make each

parser stateless.

1 pub struct Information<’a>

2 {

3 pub input: &’a [char], // input array of character

4 pub index: usize, // index of the input where the parser starts

5 pub line: usize, // line we are in, for debugging purposes

6 }

7

8 pub fn peek(info: Information) -> Result<char, PError> {

9 // Get the character at the current position without advancing the index.

10 // If we have ran out of input, throw error.

11 info.input.get(info.index)

12 .ok_or(PError { index: info.index, line: info.line })

13 .map(|c| *c)

14 }

Listing 3.1: peek function and the struct Information where we hold the state.

Note: In Listing 3.1 there is one “generic parameter” called ’a. It is not really a parameter but a lifetime

specifier. Even though a deeper understanding is not necessary, readers might refer to section B.1 for

more information.

See Listing 3.2 for an example of a simple parser that returns a character if it satisfies a condition.

Let’s break it down step by step:

1. We take a function or a closure as the condition. It takes a char and returns a boolean: true if we

match the condition and false if not. Note: we will see later in our deep dive into closures why we

need to create a generic parameter, in this case F (line 2).

2. In line 4 we create a closure using move |info: Information|; namely, the parser that we will

return. Note that the return type is omitted because it is automatically inferred.

18 Formal design and implementation of a programming language based on facets

3.2. Some combinators

3. In line 5 we peek and get a char (if error, propagate ?). We then check the condition in line 8 and,

either return the char and advance the index, or return an error.

1 pub fn parse_char_cond<’a, F>(cond: F) -> impl Parser<’a, char>

2 where F: Copy + Fn(char) -> bool

3 {

4 move |info: Information<’a>| { // Return a closure to defer execution

5 let c = peek(info)?;

6 // Do we have to increment the line count?

7 let line_inc = if c == ’\n’ { 1 } else { 0 };

8 if !cond(c) { // Does the character not match the condition, throw error

9 Err(PError {

10 index: info.index,

11 line: info.line,

12 })

13 } else { // Return the character and advance the input’s index for the

14 // next parser.

15 Ok((Information {

16 input: info.input,

17 index: info.index + 1,

18 line: info.line + line_inc,

19 }, c))

20 }

21 }

22 }

Listing 3.2: Function that parses a character that matches the supplied condition.

3.2 Some combinators

We will take the and combinator as an example (Listing 3.3).

1. In line 1 we take two parsers: parser1 and parser2. Once again, note that we are using a generic

type parameter to define what a parser is.

2. In line 6 we then create a closure in the same manner as in Listing 3.2 to defer execution.

3. Once we have to evaluate the closure, we will call both parsers (lines 9 and 10) and, if both match

the exact same part of the input (we check both Information and the output, line 11), then and

only then do we return success.

1 pub fn and<’a, O, F, G>(parser1: F, parser2: G) -> impl Parser<’a, O>

2 where F: Parser<’a, O>,

3 G: Parser<’a, O>,

Ángel Alberto Carretero Ramos 19

Parsing

4 O: PartialEq // We need equality to compare the output.

5 {

6 move |info: Information<’a>| {

7 // Only if the have matched the exact same part of the input and they

8 // have the same output.

9 let (i1, o1) = parser1.parse(info)?; // Run the first parser.

10 let (i2, o2) = parser2.parse(info)?; // Run the second parser.

11 if i1 == i2 && o1 == o2 { // Output and finished positions match.

12 return Ok((i1, o1))

13 } else {

14 return Err(PError {

15 index: info.index,

16 line: info.line,

17 })

18 }

19 }

20 }

Listing 3.3: The and combinator takes two parsers and returns only if both parsers have matched

the same input and produced the same output.

3.2.1 Advanced combinators: Macros over the AST

The bread and butter of our combinator library are the alt and the tuple combinators 4. Both have

similar implementations, so we will only look at tuple.

We want tuple to take any number of parsers as a tuple and execute them sequentially on the

input. If all match, we return a tuple of all the outputs and if one of them fails, we return an error. We

have two challenges:

• Each parser can return a different output type and we have to reflect that in the signature.

• We want to implement it for arbitrary arity but we want it to be typechecked. That is why we want

it to be a function and not a macro, or exploit varargs like “printf” in C.

Let’s tackle the first problem by fixing a tuple with 3 elements. We can model the output types using

generic parameters, see Listing 3.4.

1 fn tuple_3<’a, O0, I0, O1, I1, O2, I2>(self: &(IO, I1, I2), info: Information<’a>)

2 -> PResult<’a, (O0, O1, O2)>

3 where I0: Parser<’a, O0>,

4 I1: Parser<’a, O1>,

5 I2: Parser<’a, O2>

6 {

4The API is modelled after the nom library [15] that provides parser combinators in Rust.

20 Formal design and implementation of a programming language based on facets

3.3. Complete example: Parsing comments and whitespace

7 let (i, o) = tuple_2((self.0, self.1)).parse(info)?;

8 let (ii, oo) = self.2.parse(i)?;

9 return Ok((ii, (o.0, o.1, oo)));

10 }

Listing 3.4: tuple implementation for only three elements.

If we followed this example, we would have n different tuple_i implementations. We would like to

have one function that accepts an arbitrary tuple, so on we go to solve the second problem. We can

define a trait and use it to dispatch, see Listing 3.5.

1 pub trait Tuple<’a, O>: Copy {

2 // We cannot return a parser and we have to add the thunk inside tuple

3 // function because of non existential types.

4 fn fold(&self, info: Information<’a>) -> PResult<’a, O>;

5 }

6 pub fn tuple<’a, I, O>(parsers: I) -> impl Parser<’a, O>

7 where I: Tuple<’a, O>

8 {

9 move |info: Information<’a>| {

10 // Dispatch.

11 parsers.fold(info)

12 }

13 }

Listing 3.5: Tuple trait and function that performs the dispatch.

Lastly, to create all the implementations we can use a macro. Rust has two kinds: textual macros

and macros over the AST. We will use the second kind because, even though they are slower, they are

typechecked and written in Rust and not in a DSL (like textual macros). For the complete implementa-

tion see chapter 6.

3.3 Complete example: Parsing comments and whitespace

In a normal lexer-parser architecture, comments are discarded directly in the lexer. In the case of parser

combinators it is not that simple because of the following reasons:

1. If we changed peek we would be changing every parser and that would defeat the whole purpose

of building an independent parsing library. For example, if now we were to parse a string like

"//not a comment" we would have to pass down the state so that peek does not consume the

comment.

2. If we chose to include it in the language parsers, we would have to change every parser because

Ángel Alberto Carretero Ramos 21

Parsing

we allow comments practically everywhere.

As usual, we do not have to invent anything new. We can use the technique outlined on [12], that

is: create a combinator the consumes whitespace and comments around other parsers and decorate

those.

1 /// It discards the whitespace around the given parser, left and right.

2 /// It also discards any line comments.

3 pub fn junk<’a, F, O>(parser: F) -> impl Parser<’a, O>

4 where F: Parser<’a, O>

5 {

6 fn comment(info: Information) -> PResult<()>{

7 tuple((

8 parse_literal("//"),

9 many0(parse_char_cond(|c| c != ’\n’)),

10 parse_char(’\n’)

11)).parse(info).map(|(i, _)| (i, ()))

12 }

13 move |info: Information<’a>| {

14 let (i, (_, o, _)) = tuple((

15 w(many0(comment)),

16 parser,

17 w(many0(comment)),

18)).parse(info)?;

19 Ok((i, o))

20 }

21 }

Listing 3.6: Defining a combinator the consumes the whitespace and comments around the given

parser.

1 pub fn parse_block(info: Information) -> PResult<Expression> {

2 // A block is a series of statements that ends with an optional expression

3 // that produces a value. If no expression if found, the block returns nil.

4 let (i, (_, stmts, expr, _)) = tuple((

5 junk(parse_char(’{’)),

6 many0(stmt::parse_statement),

7 optional(parse_expression),

8 junk(parse_char(’}’)))).parse(info)?;

9 Ok((i, Expression::Block(Box::new(Block {

10 stmts: stmts,

11 expr: expr.unwrap_or(Expression::Value(Value::Nil)),

12 }))))

13 }

Listing 3.7: Example of how “junk” is used in parsing a block.

22 Formal design and implementation of a programming language based on facets

4
Typechecking

Typecheking refers to the action of validating the program against some constraints at compile time

before interpreting anything.

There is a lot of formalism behind type theory but, following the general spirit of this work, we will try

to keep things simple because we have a lot of concepts to cover. We are going to mostly follow [16]

and, for a much rigorous treatment, check it directly.

In this chapter, we will first present the rules for typechecking our language in the usual rigour. We

will then explain the most important rules in natural language to further familiarize the reader with the

notation. Lastly, we will explain some design decisions of our implementation with illustrative examples

of what the code looks like.

4.1 Rules

We are going to employ mostly standard notation ([16]) except when dealing with imperative construct-

s/side effects. To model actions like defining a variable in a scope, we are going to use the following

symbols:

• Γ: An environment with the set of correspondences of variable↔type or variable↔value, for typing

and execution respectively.

• Rules produce tuples: (v,Γ′), corresponding to the result, and the possibly altered environment

in the cases where we have introduced a variable binding.

• The program is not represented as a big expression like in Lisp or Lambda Calculus, but as a

vector of terms {t0;...;tn}. We will introduce the necessary rules so side effects such as binding

are preserved only in their scope.

• When a result is not going to be used, we will name it “_”.

Each rule will be presented alongside an explanation; see the correspondence between the equation

numbers and the enumerations in the text below.

23

Typechecking

Typing

Γ ⊢ t1 :: (bool, _), t2 :: (T, _), t3 :: (T, _)
if t1 t2 else t3 :: (T,Γ)

(4.1)

Γ ⊢ t :: (T, _)
let x: T = t; :: (nil,Γ ∪ {x 7→ T})

(4.2)

Γ ⊢ x :: (T, _) Γ ⊢ t :: (T, _)
x = t; :: (nil,Γ)

(4.3)

Γ ⊢ t1 :: (T1, _), ..., tn :: (Tn, _) Γ ⊢ f :: (fn(x1 : T1, ..., xn : Tn)->R, _)
Γ ⊢ f(t1, ..., tn) :: (R,Γ)

(4.4)

Γ ⊢ b :: R

Γ ⊢ fun(x1:T1, ..., xn:Tn)->R b :: (fn(x1 : T1, ..., xn : TN)->R,Γ)
(4.5)

Γ0 ⊢ t1 :: (_,Γ1) ... Γi ⊢ ti+1 :: (_,Γi+1) ... Γn−1 ⊢ tn :: (T,Γn)

{t1;...;tn} :: (T,Γn)
(4.6)

facet F{s1 : T1, ..., sn : Tn} :: (nil,Γ ∪ {F 7→ facet{s1 : T1, ..., sn : Tn}})
(4.7)

Γ ⊢ t1 :: (T1, _), t2 :: (T2, _), T1 ∩ T2 = ∅
t1@t2 :: (T1 ∪ T2,Γ)

(4.8)

Γ ⊢ F :: (facet{s1 : T1, ..., sn : Tn}, _) ∀i Γ ⊢ ti :: (Ti, _)
Γ ⊢ F{s1 : t1, ..., sn : tn} :: (F,Γ)

(4.9)

Γ ⊢ F :: (facet{s1 : T1, ..., sn : Tn}, _) Γ ⊢ o :: (T, _) F ∈ T

Γ ⊢ o.si :: (Ti,Γ)
(4.10)

Γ ⊢ F :: (facet{s1 : T1, ..., sn : Tn}, _) Γ ⊢ o :: (T, _) F ∈ T Γ ⊢ t :: (Ti, _)
Γ ⊢ o.si = t ; :: (Ti,Γ)

(4.11)

Listing 4.1: Typechecking specification for our language.

We are going to define a type as the shape of the data. Thus, if two elements are of the same type,

the underlying data has the same shape. It is after all a design decision because having the same type

can mean different things in different languages (for more information see subsection C.1.1). Our first

set of rules for typechecking will be:

• Rule 4.1. All the branches of an if statement should have the same type and the condition

should be bool .

• Rule 4.2. When assigning a value to a variable, the expression type should match the type hint:

24 Formal design and implementation of a programming language based on facets

4.1. Rules

let var: <type hint> = <expression>

Additionally, the type of a bound variable is the one given in its definition in the let expression.

• Rule 4.3. When modifying a variable, the new value must have the variable type as defined in their

let expression.

• Rule 4.4. When calling a function, each argument has the type that matches the signature of the

function. Example: sum("12", 1) does not typecheck because the type of “12” is str and

not int .

• Rule 4.5. A closure stores the current environment when it is defined. For a closure to be created

successfully, the type of the body must match the signature’s return type.

• Rule 4.6. A block evaluates to its last expression. Notice how the environments are passed down

for each expression evaluation. If this were not the case, variable declarations and modifications

would be lost even inside the same scope.

4.1.1 Simple typechecking

We are going to follow a very simple strategy of resolving the types recursively. Let’s take as an example

an if expression. We would first resolve the condition expression and see that the result is indeed

bool , then resolve both branches and check that the types match. The rest of the rules are very

similar except for modification of a variable.

If we think about it, we need a way to keep track of the variable definitions. We also have to take

into account the scope and if a variable is shadowed 1. It is strikingly similar to our first discussion

in section 1.4 in that we need to keep track of the correspondence identifier↔type at any point in the

program. We will adopt the same solution of nested environments.

Let’s take Listing 4.2 as an example:

When we encounter the if expression in line 4, we try to apply the type checking rule 4.1. For the

condition, the steps would be roughly the following:

1. It is a function call of > with arguments n and 0 . We check the environment 2for the function

signature and see that it is:

fn(int, int) -> bool

1Recall that in the examples we presented, we were able to create a variable in the inner scope with the same name as a variable in the outer one,

and that the former had precedence over the latter when resolving. Formally, this is called “variable shadowing”. For more information see [11, sec.

3.1].
2In our example picture we have not included the definition of functions from the prelude to not clutter the picture. The prelude is a set of names

which are imported automatically for every program.

Ángel Alberto Carretero Ramos 25

Typechecking

1 let a = 42;

2 let b: str = "42";

3 let sum_a = function(n: int) -> int {

4 if (n > 0) {

5 n + a

6 } else {

7 n

8 }

9 };

10 sum1(2);

Listing 4.2: Example program with type annota-

tions.

a = int
b = str
sum_a = fn(int) -> int

n = int

Figure 4.1: Nested list of scopes at line 4 for pro-

gram Listing 4.2.

2. We typecheck n . It is a variable so we get the type from the environment (Figure 4.1): int .

3. We typecheck 0 : It is a number literal and we assign it the type int .

4. We can see that the arguments match the signature so the condition typechecks to bool without

errors.

4.1.2 Facets

In our language we have the ability to define facets: new types that consist of several fields of previously

defined types. We also need to keep track of their fields if we want to typecheck their access. For this

problem, we have to define a struct that stores the map of field↔type. Facets are declared following

Rule 4.7.

Lastly, we can also combine many facets into one type using the @ operator to create a Derived

Type. Just like we saw on the design (section 1.2), we can represent any combination of facets, including

one, as a set.

With both considerations, the rules are as follows:

1. Rule 4.8. When combining types with @ , they cannot share a facet. It would be ambiguous

because the result would only have one, it is a set after all. If successful, the result is the union of

both sets.

2. Rule 4.9. Instantiating a facet creates a derived type with that one facet. And, implicitly: a derived

type cannot contain primitive type as facets.

3. Rule 4.10. Accessing field requires that the type is derived and that the field itself exists in the

chosen facet.

26 Formal design and implementation of a programming language based on facets

4.2. Implementation

4. Rule 4.11. Modifying a field is similar to modifying a variable in that the type of the definition of the

facet must be used.

4.2 Implementation

In the implementation, by far, most of the code consists of error checking and error reporting. If we

think about it, our typechecker is proving that the program that we are going to interpret is syntactically

correct. It not only has to do that, but it also has to present the user with readable error messages in

case something goes wrong.

In a real compiler, error reporting with pretty output, line numbers and suggestions, takes up even

more code. The rust compiler is notorious for doing this correctly, look at the following example:

error: expected ‘;‘, found keyword ‘if‘

--> dyntypes/src/typecheck/mod.rs:68:130

|

68 | let facet = it.next().unwrap_or_else(||

panic!("Attempting to access a field without specifying facet, {}!", id))

| ^ help: add ‘;‘ here

69 | // If we have asked for a facet that our object does not

70 | // have, error.

71 | if !fs.contains(facet) {

| -- unexpected token

Our starting point is the environment from last section (subsection 4.1.1), this time as a collection

of correspondences between identifiers and types. For now, we are going to keep it as a black box

because the implementation is tricky and is best explained in the context of the interpreter (subsec-

tion 5.2.1). We just have to know that we can bind and retrieve values while the rules for scoping are

respected.

We have to keep the following values in the environment:

1 #[derive(Clone, Debug, Hash, Eq)]

2 pub enum Type {

3 // A primite type: int, str, bool, etc.

4 Primitive(Facet),

5 // Derived type is a set of facets.

6 Derived(BTreeSet<Facet>),

7 // A function contains its signature, type of the args that it receives and

8 // output type.

9 Function(Box<Signature>, Option<Box<Signature>>),

10 // Struct is a correspondence name<->field. We use this to internally

11 // represent facet types.

12 Struct(BTreeMap<Identifier, Type>),

Ángel Alberto Carretero Ramos 27

Typechecking

13 // Macros, @, and, or, etc. that dont abide by the normal evaluation rules.

14 SpecialForm(Identifier),

15 }

Listing 4.3: Type enum.

Lastly, we define a trait that we are going to implement for each data structure that can be type-

checked (Listing 4.4). The trait only contains one function that, if successful, returns the type of the

checked structure and, if not, returns an error with an appropriate message.

1 pub trait TypeCheck {

2 fn type_check(&self, env: &TEnv) -> Result<Type, TError>;

3 }

Listing 4.4: Trait for typechecking.

4.2.1 Case study: Typechecking a facet initialization

Instead of something simple like an if expression, we have chosen a more prototypical example of

what the code looks like: full of error checking and reporting.

1 // Get the struct type to see the fields and arity.

2 let sty = env.borrow().lookup_value(name)

3 .unwrap_or_else(|| panic!("Struct {} not defined", name));

4 // Check that it is indeed an struct type.

5 if let Type::Struct(ref tmembers) = sty {

6 // Check that we are using the same number of fields per the definition.

7 if tmembers.len() != members.len() {

8 return Err(TError {

9 reason: format!("Missing fields in facet {} initialization", name)

10 });

11 }

12 // For each member, typecheck it and see if it exists on the definition and

13 // if it matches the type.

14 for (mid, mexp) in members {

15 let t_mexp = mexp.type_check(env)?;

16 let t_expected = tmembers.get(mid)

17 .ok_or(TError {

18 reason: format!("Field {} not found in struct {}", mid, name)

19 })?;

20 if &t_mexp != t_expected {

21 return Err(TError {

22 reason: format!("Assignment to facet field {}.{} is of wrong

23 type. Got {}, expected {}",

24 name, mid, t_mexp, t_expected)

28 Formal design and implementation of a programming language based on facets

4.2. Implementation

25 });

26 }

27 }

28 } else {

29 return Err(TError {

30 reason: format!("Expected facet, got {}", name)

31 });

32 }

33 Ok(Type::new_derived().insert(name))

Listing 4.5: Implementation for facet initialization in the type system.

Observe that we have to check and report four different kinds of errors in this short snippet:

• In line 3 we check that the struct type has been defined before trying to instantiate it.

• In line 30 we check that the given type is indeed a facet and can be initialized.

• In line 9 we check that the number of fields supplied and the expected number match.

• In line 18 we check that the field names supplied are correct.

• In line 24 we check the that the type of the field in the facet matches the value the programmer is

assigning to it.

Observe that line 15 is of special significance. The crux of the typechecker is the type_check

function declared in Listing 4.4. It is a recursive call that bubbles up the previous result to typecheck

bigger structures. In this case, we are using it pretty straightforwardly to get the type of the expression

whose value is to be assigned to the field and see if it matches the expected type. Also note that at

the end of the function (line 33) we return the type of the facet initialization expression: a derived set

containing only said facet.

4.2.2 Case study: Return statements

This is a good example of a not so straight forward implementation. In this case, we want to type-

check return statement that are nested arbitrarily deep. That means that, in the middle of typechecking

another rules, we have to see if the return matches the outer function. How could we do that?

We could pass the function down for every call but that is very inelegant considering we have the

environment at hand. Our solution is to choose a reserved identifier, in this case "." and bind the

current function to it and the environment will take care of the rest. See line 5 in Listing 4.6 for an

example of how we bind the function using the environment, and line 1 in Listing 4.7 for an example of

how we retrieve it to later use it.

Ángel Alberto Carretero Ramos 29

Typechecking

1 // Create a new scope for the function.

2 let scope = Environment::from_parent(env);

3 // Bind the function because we have to typecheck all the nested return

4 // statements. When we encounter one, we resolve "." and we get the function.

5 scope.borrow_mut().bind_value(Identifier::from("."), &fun_typ);

Listing 4.6: When we encounter a function definition, we bind it.

1 let ffun = env.borrow().lookup_value(&Identifier::from("."))

2 .ok_or(TError {

3 reason: "Return outside of a function".to_string()

4 })?;

5 if let Type::Function(ref sig, _) = ffun {

6 let ret = e.type_check(env)?;

7 if ret != sig.ret {

8 return Err(TError {

9 reason: format!("Return value {} does not match signature {}",

10 ret, sig.ret)

11 });

12 }

13 return Ok(ret);

14 } else {

15 panic!("Error: expected ’.’ to be bound to a function but it is bounded to \

16 something else");

17 }

Listing 4.7: In a return statement, we get back the function we are in.

30 Formal design and implementation of a programming language based on facets

5
Interpreter

Interpreting the code is the last step of our architecture. At this point we have an AST that was “proven”

by the typechecker to be correct, which means that we only have to concern ourselves with the exe-

cution part. For most constructs it is pretty straightforward so, in this chapter, we will mostly concern

ourselves with the details of the implementation. But first we will present the semantic specification

based on the formalism described on section 4.1. Then, we will introduce the implementation generally

and, lastly, walk through a few examples.

5.1 Rules

We build on top of the framework for imperative constructs in section 4.1. The main difference is that,

when dealing with semantics, we will not choose small-steps semantics like in [16], but big-step seman-

tics ([17]) that more closely model actions such as declaring a variable or modifying the environment.

There is a new symbol, ⇓, that, informally, means evaluate a term until it becomes a value and cannot

be further evaluated. Once again, we are not going to explain rigorously the formalism and, instead,

readers unfamiliar to big-step semantics who want to deepen their understanding should check the

references directly.

Semantics

Γ ⊢ t1 ⇓ (true, _), t2 ⇓ (v, _)
if t1 t2 else t3 ⇓ (v,Γ)

Γ ⊢ t1 ⇓ (false, _), t3 ⇓ (v, _)
if t1 t2 else t3 ⇓ (v,Γ)

(5.1)

Γ ⊢ (v,Γ) ⇓ (v,Γ)
(5.2)

Γ ⊢ t1 ⇓ (v1, _), t2 ⇓ (v2, _)
t1@t2 ⇓ (v1 ∪ v2,Γ)

(5.3)

31

Interpreter

Γ ⊢ t ⇓ (v,Γ′)

let x: T = t; :: (nil,Γ ∪ {x 7→ (v,Γ′)})
(5.4)

Γ ⊢ t ⇓ (v, _)
x = t; ⇓ (nil, (Γ \ {x 7→ _}) ∪ {x 7→ v})

(5.5)

Γ ⊢ fun(x1, ..., xn) b ⇓ ((Γ,fun(x1, ..., xn) b),Γ)
(5.6)

Γ0 ⊢ t1 ⇓ (_,Γ1) ... Γi ⊢ ti+1 ⇓ (_,Γi+1) ... Γn−1 ⊢ tn ⇓ (vn,Γ
n)T

Γ ⊢ {t1;...;tn} ⇓ (vn,Γn)
(5.7)

Γ ⊢ t1 ⇓ (v1, _), ..., tn ⇓ (vn, _) Γ ⊢ f ⇓ ((Γc,fun(x1, ..., xn) b), _)
Γc ∪ {xi 7→ vi}1≤i≤n ⊢ b ⇓ (v, _)

Γ ⊢ f(t1, ..., tn) ⇓ (v,Γ)
(5.8)

∀i Γ ⊢ ti ⇓ (vi, _)
Γ ⊢ F{s1 : t1, ..., sn : tn} ⇓ (F{si : vi}1≤i≤n,Γ)

(5.9)

Γ ⊢ o ⇓ (T, _) F{si : vi}1≤i≤n ∈ T

Γ ⊢ o.si ⇓ (vi,Γ)
(5.10)

Γ ⊢ o ⇓ (T, _) F{si : vi}1≤i≤n ∈ T Γ ⊢ t ⇓ v

Γ ⊢ o.sj = t ; ⇓ (nil, (Γ \ {o 7→ F{si : vi}i}) ∪ {o 7→ F{si : vi}i ̸=j ∪ {sj : v}})
(5.11)

Listing 5.1: Evaluation semantics specification for our language.

After explaining each rule individually in chapter 4, readers should be already familiar to the formal-

ism. Additionally, semantics are more intuitive because most languages employ the same constructs.

For these reasons, we will not explain every rule and, instead, focus on a few examples.

The first rule, 5.1, splits the if into two cases, if the condition is true we return the result of evaluating

the first branch, otherwise return the result of evaluating the other branch. As usual, the devil is in the

details. For instance, both branches are not evaluated, only the one that is selected by the predicate.

This means that side effects such as altering a variable or printing to the screen only happen for the

evaluated branch, as expected.

Another important rule is 5.2 that says that values evaluate to themselves, for example, a string

evaluates to itself. Seemingly simple, it is crucial because it serves as the base case of the recursion.

Lastly, rule 5.6 says that when we create a function, we evaluate it into a closure storing the environment

at that point in time.

The rest are concerned with function application (rule 5.8), facet instantiation(rule 5.9), facet com-

bining (rule 5.3), let binding (rule 5.4), and running blocks of statements (5.7). These rules are very

similar to their homonyms in chapter 4.

32 Formal design and implementation of a programming language based on facets

5.2. Implementation

5.2 Implementation

Once the rules have been set, or even from common sense, we can “transcribe” them to implement

the interpreter. The code is far simpler than that of the typechecker because we do not care about

error reporting or correction. If things go wrong we can crash (safely) the program because that means

we committed a mistake in the type checker. Even if we look at the most contrived example, see

Listing 5.2, there is only one control flow, and it is indeed much sorter than similar implementations in

the typechecker.

1 // Create a new scope.

2 let scope = Environment::from_parent(&env);

3 let Function{ arg_names, body, ..} = fun.as_ref();

4 // Evaluate all the args.

5 for (name, arg) in arg_names.iter().zip(args) {

6 (*scope).borrow_mut().bind_value(name.to_owned(), &arg)

7 }

8 // Evaluate the function.

9 let res = body.eval(&scope);

Listing 5.2: Executing a function call in the interpreter.

There were only two difficult design decisions: return statements and modeling the environment.

5.2.1 Case study: Environment

We need to build a tree of environments where some of them are shared. For example, when a closure

captures its environment, we want to store a reference and not a copy because it might be changed

later on (see Listing 5.3) and that change has to be reflected.

1 let n = 3;

2 let sum_n = function(i: int) -> int {

3 n + i

4 };

5 print(sum_n(1)); // 3 + 1 = 4

6 n = 2;

7 print(sum_n(1)); // 2 + 1 = 3

Listing 5.3: The closure stores a reference to n and, when n is changed, it is changed also for the

closure.

It is clear that we need shared ownership because both, the outer context and the closure own the

environment. Any of them could outlive the other and we have to ensure that the environment is not

freed; that is why references do not suffice.

Ángel Alberto Carretero Ramos 33

Interpreter

Having multiple owners is directly against the semantics of Rust that, by forcing the programmer

to explicitly think about ownership, can have compile time memory management. It does not forbid it

though, but we have to resort to what all languages use: a GC, in our case, reference counting (recall

section 1.4). It is already provided as a wrapper type in Rust Rc<T> that does everything automatically.

The only caveat is that we cannot mutate the inner T because that would violate the “max one mutable

reference” rule. Rust also provides another type RefCell that lets us mutate internally 1by checking at

runtime whether we have more than one mutable reference (and panicking if we do).

1 #[derive(Debug, Clone)]

2 pub struct Environment<T>

3 where T: Clone

4 {

5 env: Env<T>,

6 // Option because the topmost node does not have a parent.

7 parent: Option<Rc<RefCell<Environment<T>>>>

8 }

Listing 5.4: Definition for our tree of environments.

5.2.2 Case study: Facet fields

Resolving the facet fields proved very tricky. We could have changed what an Identifier is and

represent it using a vector of fields. However, that is not a very flexible implementation. For instance,

we want to be able to omit the explicit facet annotation in the field if there is no ambiguity (recall the

syntax from Listing 2.5). Plus, now we have to think in terms of two types of identifiers because fields

are not allowed in let expressions; which means that have to create a new datatype.

Because facet fields were added when most of the scaffolding for the interpreter was already there, I

decided to keep everything as is and perform checks instead of changing Identifier. This means that

when resolving a field against the environment, it is not as simple as looking for the key in the HashMap.

Apart from the error handling, for each field we have to do the following (also see Listing 5.5):

1. Get the type associated to the first identifier and check that it is derived (i.e. has facets). We

perform this step by querying the whole environment, not just the current scope.

2. Get the next field and facet delimited by “.” and “::” respectively.

3. Check that such a facet exists in the current derived type and that inside said facet there exist a

field with the given name.

4. Get the type. If there are more fields, go to step 1. If this is the last field return the value success-

fully.

1Mixing Rc and RefCell is such a common pattern that there is a chapter in [11] dedicated to it.

34 Formal design and implementation of a programming language based on facets

5.2. Implementation

1 pub fn lookup_field(&self, id: &Identifier) -> Option<IValue> {

2 // We try to recursively resolve identifiers with dots as

3 // <struct1>.<struct2>.<structN>.field. Note: if there is no dot, main_id

4 // is directly the variable: "abc".split(".") == ["abc"]

5 let mut it = id.split(’.’);

6 // It is never gonna fail because it is the first one.

7 let main_id = it.next().unwrap();

8

9 // Get the type to start traversing for fields.

10 let mut v = self.lookup_value(&main_id.to_string())?;

11 for field in it {

12 // We are now looking at main.{field} where {field} can have nested fields.

13 // First of all we have to make sure it is a derived type.

14 if let IValue::Derived(ref fs) = v {

15 // Then we have to extract the "turbofish" name in {field} i.e.

16 // a::A that is field a of struct A.

17 let mut it = field.split("::");

18 let field_alone = it.next().unwrap();

19 let facet = it.next().unwrap();

20

21 // We can unwrap because it has been type checked.

22 v = fs.get(facet).unwrap().get(field_alone).cloned().unwrap();

23 } else {

24 panic!()

25 }

26 }

27 Some(v)

28 }

Listing 5.5: Looking up a field in the environment.

Binding fields is pretty similar.

5.2.3 Case study: Return statements

We saw in subsection 4.2.2 that return statements are complicated because they can appear arbitrary

deep inside the control flow and they have to be “propagated” to the outside function. In [8], the author

proposes the use of Java exceptions because of their similar semantics. Once an exception is thrown

inside the interpreter, the control flow is unwound until the function call catches it. Unfortunately for us,

there are no such things as exceptions in Rust because of the extra cost. We can nevertheless model

returns as a new data type and make expressions that contain a return evaluate to that. For statements,

we just have to be mindful and check the type, if it is a return use it and, if not, discard it (statements do

not produce values). Lastly, we have to check for returns inside loops to exit them early. The resulting

code is very simple, see Listing 5.6.

Ángel Alberto Carretero Ramos 35

Interpreter

1 Statement::Expression(e) => {

2 // Statements return empty (): in our language, null except if we are

3 // bubbling up a return statement.

4 if let i @ IValue::Return(_) = e.eval(env) {

5 return i;

6 } else {

7 return IValue::Nil;

8 }

9 }

10 Statement::While { condition, body } => {

11 ...

12 while condition.eval(&scope).get_boolean().unwrap_or(false) {

13 // If we get a return, break from the while early.

14 if let i @ IValue::Return(_) = body.eval(&scope) {

15 return i

16 }

17 }

18 }

Listing 5.6: Executing return statements and bubbling up the value.

36 Formal design and implementation of a programming language based on facets

6
Implementation and validation

The purpose of this chapter is to explain the structure of the implementation in itself. In the previous

chapters, we have seen a few of the technical challenges in isolation, but we have never talked about

the big picture.

The complete project consists of 2669 lines of Rust code divided into several modules 1:

• lib.rs. Some definitions that will be used across modules extensively, for instance the definition of

a parser.

• parser. It is the library of general parser combinators, the primitives that we use to create our

language parser. It is further subdivided into parsers and combinators of increasing complexity.

• lang. This module builds upon our agnostic library of parser combinators to create bespoke

parsers for our language. There are also numerous primitives and utility functions but, in general,

it is structured in a hierarchical manner where one set of parsers uses another. Lastly, it also

contains the graphing submodule that creates a visual representation of the AST.

• typecheck. It defines the traits, structures and functions necessary for typechecking along with

its implementation.

• eval. It contains all the necessary definitions and implementation for evaluation. Its structure is

very similar to that of the typecheck module.

• impl/lib. It exports two macros that are the core of our parser module, alt and tuple that let us

combine parsers.

A common heuristic used to gauge the relative complexity of each module is to calculate its percentage

of lines of code (LOC) in relation to the whole project. Said numbers can be found in Table 6.1

The complete source code is available in a public git repository: https://gitlab.com/letFunny/dyntypes.

1For technical reasons we had to create another “crate” for the macros. A Rust crate is a standalone library that can be distributed in itself.

37

https://gitlab.com/letFunny/dyntypes

Implementation and validation

module LOC (absolute) LOC (relative)

parser 297 11%

lang 1079 40%

typecheck 514 19%

eval 470 17%

impl/lib 192 7%

rest 117 4%

Table 6.1: Lines of code (LOC) absolute and relative per project module.

6.1 Validation

A project of this complexity, where modules depend on each other, needs testing. This is especially

important when writing an interpreter because, when a program fails, it is difficult to debug the issue. For

example, when a program produces the wrong result, it may not be the interpreter that is wrong, it may

be the fault of the parser that misunderstood the syntax. Furthermore, debugging parsers combinators

is inherently difficult because you are dealing with function recursion and huge stack traces. Among

other reasons, this is why we created a graphing backend. When a program fails, we are able to quickly

check the AST visually to see if it was a fault of the parser.

Returning to the testing aspect, end-to-end tests were preferred over unit testing each module. One

of the reasons is that, at the end of the day, what we care about is that the interpreter as a whole works,

and produces either the correct result or the relevant error. The other one is that building the project

was an iterative and learning process, thus unit tests would have to be constantly rewritten.

Validation results: A bespoke testing framework was created in Python where currently we have

70 test programs. For more information on how the testing works see Appendix D.

38 Formal design and implementation of a programming language based on facets

7
Conclusions and future work

Let’s recall where we started to see where we were headed. Through an example, we first discussed

the pattern of not using the type system because of its stiffness. This, we found, led to several problems

such as documentation rot or replacing types with a mixture of casts and ad hoc tests.

We then explained the framework under which we will attempt to solve the previous issues: facets.

Using them, we designed a new language that had two objectives. The first and the obvious one is

to showcase how facets can solve the problem by bringing more flexibility to the type system. The

second, due to the nature of this work, is to learn as much as possible and convey, in this text, the

main challenges of creating an interpreter from the ground up. This proved very enriching because,

by knowing about the full picture, we could tweak design decisions that affected seemingly unrelated

areas. For instance, when designing the syntax we often only think about expressiveness, however we

learnt that speed and explicitness of the interpreter also have to be a consideration from day one. We

finalized the chapter by giving a full implementation that corresponded to the original problem in our

language.

From here on, the rest of the text is devoted to explaining the three areas of our interpreter: parsing,

typechecking and executing. Each filled with theory, a formal specification of our language, and some

of the most important implementation details. Even though we could not cover a lot of topics related to

the implementation itself, we saw a glimpse of the difficulty that the interpreter entails. Maybe the most

illustrative example is the parsing chapter. If we take the usual route and use a program to translate

our grammar we would be done, but what if we wanted to do parsing ourselves like most mature

languages? We saw the even under one of the most simple paradigms: parser combinators, things

were very difficult. It is nevertheless a very rewarding task, and one that everyone should undertake at

some point because, after all, there is no better way to learn something than to implement it.

The future work is to build upon the scaffolding we have created. Many areas could use improvement

and novel techniques. On the one hand, if we focus on the design and expressiveness, we discussed

in the text that generics fit naturally. We could then upgrade the type system to a more complex type

theory. On the other hand, if we were to focus on the interpreter, we could upgrade the implementation’s

speed and usability considerably. For the former, we would have to create a new more performant

39

Conclusions and future work

interpreter that is not tree-walk but probably a VM à la Java. For the latter, we could improve parsing by

having better error messages by implementing more advanced techniques such as the one described

in [18].

7.1 Future work: generics

If we had to choose one among the many improvements we have discussed, it would clearly be gener-

ics. There is a very natural statement that we would like to write in our language: take any type that has

facet A and add facet B. Without generics, it is simply not possible. That is why, in the remainder of this

section, we will lay down the design for future work to build upon.

The syntax will be modeled after Rust. See Listing 7.1 for an example program that showcases it,

and see Appendix A for the complete syntactic rules.

1 facet A { a : str }

2 facet B {}

3 facet Base {}

4

5 let fun = function<T: A>(t: T) -> T+B {

6 print(t.a);

7 // Result is T+B

8 a @ B {}

9 };

10 let obj: Base+A = Base {} @ A { a : "working" };

11 let obj_2: Base+A+B = fun(obj);

Listing 7.1: Example of the usage of generics, and how the natural problem of adding facets to

arbitrary types can be modeled.

Observe that in line 5 we are basically accepting any type T that has facet A. More formally,

it involves what is called a subtyping relationship; we would say that T is such that T < {A}. In

our language this relationship is easily modelled after the subset operation (⊂) on sets. As a result,

T < {A} means {A} ⊂ T or, in this case, A ∈ T . Another important point is that when we call the

function at line 11, T is set to Base+A and the function signature is coerced into Base+A -> Base+A+B. In

layman terms, it is as if the function was defined Base+A -> Base+A+B for that particular function call.

In the above paragraph, in that glimpse into how generics work, we already see that the theory

is indeed quite complex. In addition to the difficulty of the implementation, that is one of the reasons

that generics were not included in the interpreter, even tough they are the preferred improvement. The

other reason is that we have many topics to cover in this work, and we prefer to leave it as a future

enhancement than to do a poor job at explaining all the different ideas, lacking depth in each one.

40 Formal design and implementation of a programming language based on facets

Bibliography

[1] Juan De Lara, Esther Guerra, and Jörg Kienzle. “Facet-oriented Modelling”. In: ACM Transac-

tions on Software Engineering and Methodology 30.3 (May 2021). issn: 1049-331X, 1557-7392.

doi: 10.1145/3428076. url: https://dl.acm.org/doi/10.1145/3428076 (visited on 02/09/2022).

[2] Matteo Baldoni, Guido Boella, and Leendert van der Torre. “powerJava: ontologically founded

roles in object oriented programming languages”. In: Proceedings of the 2006 ACM symposium

on Applied computing - SAC ’06. the 2006 ACM symposium. Dijon, France: ACM Press, 2006.

isbn: 978-1-59593-108-5. doi: 10.1145/1141277.1141606. url: http://portal.acm.org/citation.

cfm?doid=1141277.1141606 (visited on 04/25/2022).

[3] Stephan Herrmann. “A Precise Model for Contextual Roles: The Programming Language Ob-

jectTeams/Java”. In: (2007).

[4] Raku. Raku documentation: syntax role. url: https : / / docs . raku .org / syntax / role (visited on

04/25/2022).

[5] Max Leuthäuser and Uwe Aßmann. “Enabling View-based Programming with SCROLL: Using

roles and dynamic dispatch for etablishing view-based programming”. In: Proceedings of the

2015 Joint MORSE/VAO Workshop on Model-Driven Robot Software Engineering and View-

based Software-Engineering. MORSE/VAO ’15: Joint 2015 MORSE/VAO Workshop on Model-

Driven Robot Software Engineering and View-based Software-Engineering. L’Aquila Italy: ACM,

July 21, 2015. isbn: 978-1-4503-3614-7. doi: 10.1145/2802059.2802062. url: https://dl.acm.

org/doi/10.1145/2802059.2802062 (visited on 04/26/2022).

[6] Fernando Sérgio Barbosa and Ademar Aguiar. “Modeling and Programming with Roles: Intro-

ducing JavaStage”. In: (2012).

[7] Supasit Monpratarnchai and Tamai Tetsuo. “The Implementation and Execution Framework of a

Role Model Based Language, EpsilonJ”. In: 2008 Ninth ACIS International Conference on Soft-

ware Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing. 2008

Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Network-

ing, and Parallel/Distributed Computing. Phuket, Thailand: IEEE, 2008. isbn: 978-0-7695-3263-9.

doi: 10.1109/SNPD.2008.103. url: http://ieeexplore.ieee.org/document/4617382/ (visited on

04/26/2022).

[8] Robert Nystrom. Crafting interpreters. Daryaganj Delhi: Genever Benning, 2021. isbn: 978-0-

9905829-3-9.

[9] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and interpretation of com-

puter programs. 2nd ed. Cambridge, Mass. : New York: MIT Press ; McGraw-Hill, 1996. isbn:

978-0-262-01153-2 978-0-07-000484-9.

41

https://doi.org/10.1145/3428076
https://dl.acm.org/doi/10.1145/3428076
https://doi.org/10.1145/1141277.1141606
http://portal.acm.org/citation.cfm?doid=1141277.1141606
http://portal.acm.org/citation.cfm?doid=1141277.1141606
https://docs.raku.org/syntax/role
https://doi.org/10.1145/2802059.2802062
https://dl.acm.org/doi/10.1145/2802059.2802062
https://dl.acm.org/doi/10.1145/2802059.2802062
https://doi.org/10.1109/SNPD.2008.103
http://ieeexplore.ieee.org/document/4617382/

Bibliography

[10] Microsoft. Back To Basics: Reference Counting Garbage Collection. url: https://web.archive.

org/web/20210224190617/https://docs.microsoft.com/en-us/archive/blogs/abhinaba/back-to-

basics-reference-counting-garbage-collection (visited on 03/29/2022).

[11] Steve Klabnik and Carol Nichols. The Rust programming language. San Francisco: No Starch

Press, 2019. isbn: 978-1-71850-044-0.

[12] Graham Hutton and Erik Meijer. “Monadic Parser Combinators”. In: (1996).

[13] John Hughes. “Why Functional Programming Matters”. Functional Conf 2016. Bengaluru, India,

Oct. 13, 2016. url: https://confengine.com/conferences/functional-conf-2016/proposal/2965/

why-functional-programming-matters.

[14] James Coglan. Introduction to parser combinators. The If Works. url: https : / / web.archive .

org / web / 20201109041458 / https : / / blog . jcoglan . com / 2017 / 07 / 06 / introduction - to - parser -

combinators/ (visited on 03/29/2022).

[15] Geoffroy Couprie. nom. Version 7.1.1. url: https://docs.rs/nom/7.1.1/nom/index.html.

[16] Benjamin C. Pierce. Types and programming languages. Cambridge, Mass: MIT Press, 2002.

isbn: 978-0-262-16209-8.

[17] Jonathan Aldrich. “Lecture Notes: Big Step Environment Semantics”. In: (2020).

[18] Sérgio Medeiros and Fabio Mascarenhas. “Syntax error recovery in parsing expression gram-

mars”. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing. SAC 2018:

Symposium on Applied Computing. Pau France: ACM, Apr. 9, 2018. isbn: 978-1-4503-5191-1.

doi: 10.1145/3167132.3167261. url: https://dl.acm.org/doi/10.1145/3167132.3167261 (visited

on 03/19/2022).

42 Formal design and implementation of a programming language based on facets

https://web.archive.org/web/20210224190617/https://docs.microsoft.com/en-us/archive/blogs/abhinaba/back-to-basics-reference-counting-garbage-collection
https://web.archive.org/web/20210224190617/https://docs.microsoft.com/en-us/archive/blogs/abhinaba/back-to-basics-reference-counting-garbage-collection
https://web.archive.org/web/20210224190617/https://docs.microsoft.com/en-us/archive/blogs/abhinaba/back-to-basics-reference-counting-garbage-collection
https://confengine.com/conferences/functional-conf-2016/proposal/2965/why-functional-programming-matters
https://confengine.com/conferences/functional-conf-2016/proposal/2965/why-functional-programming-matters
https://web.archive.org/web/20201109041458/https://blog.jcoglan.com/2017/07/06/introduction-to-parser-combinators/
https://web.archive.org/web/20201109041458/https://blog.jcoglan.com/2017/07/06/introduction-to-parser-combinators/
https://web.archive.org/web/20201109041458/https://blog.jcoglan.com/2017/07/06/introduction-to-parser-combinators/
https://docs.rs/nom/7.1.1/nom/index.html
https://doi.org/10.1145/3167132.3167261
https://dl.acm.org/doi/10.1145/3167132.3167261

Appendices

A
Formal grammar rules

1 program ::= (stmt)+ ;

2 stmt ::= var_decl | assignment | while | return | facet_decl | expression_stmt ;

3 expr ::= function | block | if | tag ;

4

5 // Statements

6 var_decl ::= "let" IDENTIFIER (":" TYPE)? ("=" expr)? ";" ;

7 while ::= "while" expr block ;

8 assignment ::= IDENTIFIER_DOT "=" expr ";" ;

9 return ::= return (expr)? ";" ;

10 facet_decl ::= "facet" IDENTIFIER "{"

11 (IDENTIFIER ":" TYPE ",")*

12 (IDENTIFIER ":" TYPE)?

13 "}" ;

14 expression_stmt ::= expr ";" ;

15

16 // Expressions

17 function ::= "function" (generics)? "(" (args)? ")" ("->" TYPE)? block ;

18 block ::= "{" (stmt)* (expr)? "}" ;

19 if ::= "if" expr block ("else" block)? ;

20

21 // Ladder

22 tag ::= logic_or ("@" logic_or)* ;

23 logic_or ::= logic_and ("or" logic_and)* ;

24 logic_and ::= equality ("and" equality)* ;

25 equality ::= comparison (("==" | "!=") comparison)* ;

26 comparison ::= term (("<=" | ">=" | "<" | ">") term)* ;

27 term ::= factor (("+" | "-") factor)* ;

28 factor ::= unary (("*" | "/") unary)* ;

29 unary ::= "!" expr | call ;

30 call ::= (IDENTIFIER_DOT | grouping) "(" ((expr ",")* expr)? ")"

31 | facet ;

32 facet ::= IDENTIFIER "{"

33 (IDENTIFIER ":" expr ",")*

34 (IDENTIFIER ":" expr)?

35 "}"

36 | primary ;

45

Formal grammar rules

37

38 primary ::= "true" | "false" | "nil" | NUMBER | STRING

39 | IDENTIFIER_DOT | grouping ;

40 grouping ::= "(" expr ")" ;

41

42

43 // Utility

44 TYPE ::= function_type | derived_type ;

45 IDENTIFIER ::= ("a" ... "z" | "_") ("a" ... "z" | "_" | "0" ... "9")* ;

46 IDENTIFIER_DOT ::= IDENTIFIER ("." IDENTIFIER "::" IDENTIFIER)* ;

47 NUMBER ::= ("0" ... "9")+ ;

48 STRING ::= ("\"" (^"\"")* "\"")+ ;

49

50 // Aux

51 args ::= (IDENTIFIER ":" TYPE ",")* IDENTIFIER ":" TYPE ;

52 generics ::= "<" IDENTIFIER (":" TYPE)? ",")* IDENTIFIER ":" TYPE ">" ;

53 function_type ::= "fn" generics "(" (TYPE)* ")" ("->" TYPE)? ;

54 derived_type ::= IDENTIFIER ("+" IDENTIFIER)* ;

Listing A.1: Formal grammar rules in BNF.

46 Formal design and implementation of a programming language based on facets

B
Introduction to Rust

Rust is best described as a hybrid between a high level and low level programming language. It is

functional and has a powerful type system, but you can also work with raw pointers and interact with

C code fairly easily. The cherry on top of this mix is the infamous borrow checker. We are going to

delve into the exact rules later but, for now, it suffices to give a high level overview: basically Rust has

restricted its semantics so that each variable has clear ownership. This lets the compiler figure out

exactly when each variable has to be freed at compile time, sparing the need for a Garbage Collector

and preventing whole classes of bugs such as Use-After-Free.

Another of the major goals of Rust is fearless concurrency which means that, thanks to clearly

defined ownership, we can program concurrently and safely. We cannot share a value between threads

because it must have one owner only. We are forced to wrap it in a safe container that protects it with a

mutex; there is no undefined behaviour 1.

The last major goal is zero cost abstractions. Even though Rust is a high level language with a lot of

tools such as generics or collections, these do not come at a runtime cost but rather at a compile time

cost. The claim is that the compiler will write the final binary as if we never had those luxuries.

All of these points combined result in a language with a great deal of expressiveness that is as fast

as C 2but safe and concurrent by design.

Throughout the next few sections we will present several aspects of the language that are needed

to understand the design and implementation of the interpreter. The syntax can be understood just by

looking at the examples.

B.1 References

By far my biggest mistake in the implementation was to think that references were pointers when they

are not. For the rest of the explanation refrain from thinking that they are sort of a generalization; we

1That is if you only consider safe Rust code. We will not explain it here, but you can drop into unsafe Rust at any moment and the strict rules do

not apply anymore. However, doing so is heavily discouraged and only done for performance critical code.
2See for example the benchmark for web servers at https://www.techempower.com/benchmarks/ where Rust is among the best.

47

https://www.techempower.com/benchmarks/

Introduction to Rust

have to start from a clean slate.

A reference in Rust comes in two flavours:

• Immutable. Example: &variable. As the names indicates, an immutable borrow means that

you do not have ownership but you can refer to the variable, for example print it or use it to do

calculations. What you cannot do is mutate the variable.

• Mutable. Example: &mut variable. We also do not have ownership and we can do every-

thing 3that an immutable reference can. Additionally, we also are able to mutate the inner value.

B.1.1 Lifetimes

In simple Rust code, we can use & to create references because their lifetimes are elided. Nevertheless,

all of them have a lifetime and, when dealing with slightly more complex scenarios we have to specify it

manually.

A lifetime just marks how long we expect the reference to last. For example, if we take a reference

from an owned value, we expect it to last less than or equal to the life of the owned value (if not, we

have the analogue of a dangling pointer). See a more contrived example in Listing B.1.

1 fn<’a, ’b> output_lifetime_s1(s1: &’a str, s2: &’b str) -> &’a str {

2 if s1 == s2 {

3 s1

4 } else {

5 ""

6 }

7 }

Listing B.1: Example where we specify that the output lifetime is maximum ’a.

B.1.2 Borrow checker

Rules for references:

• Either have several immutable borrows or one mutable borrow.

• The reference must not outlive the value. That is: the lifetime is the reference is less than or equal

to the lifetime of the value.

Rules for ownership:

3This is not strictly true. For example, we may clone an immutable reference to produce another one, but we cannot clone a mutable reference

because that violates the rules of the borrow checker.

48 Formal design and implementation of a programming language based on facets

B.1. References

• Data only has one owner.

B.1.3 Traits

We could say that traits are like really powerful interfaces. That is, we specify a contract, a set of

functions that implementors have to define to have the interface’s type. See Listing B.2 for an example.

1 pub trait PartialEq<Rhs: ?Sized = Self> {

2 /// This method tests for ‘self‘ and ‘other‘ values to be equal,

3 /// and is used by ‘==‘.

4 fn eq(&self, other: &Rhs) -> bool;

5

6 /// This method tests for ‘!=‘.

7 fn ne(&self, other: &Rhs) -> bool {

8 !self.eq(other)

9 }

10 }

Listing B.2: Excerpt from the language prelude of the trait used to test for equality.

Their power stems from the fact that we can say things like: “Implement trait A for all types that imple-

ment traits B and C” (see Listing B.3).

1 impl<T> A for T

2 where T: B+C

3 { ... }

Listing B.3: Implement trait A for all types that already implement B and C.

Important traits

There are many crucial and specialized traits in the standard library. Here, we will present the three

indispensable ones a newcomer is likely going to come across:

• Copy: When a type implements this trait it does not change ownership, it is copied for the new

owner. The usual mantra is that every object that can implement copy should.

• Clone: Used to signal that you can copy the type but it is not a cheap operation; thus, it requires

and explicit call.

• Display: Trait used to format an object to present it to the user.

Additionally, most of the important traits and can be automatically implemented for a type using a

#derive macro. For more information, check out [11].

Ángel Alberto Carretero Ramos 49

Introduction to Rust

Ownership of captured variables in closures (Rust)

As you might have guessed, capturing variables introduces a change in ownership and, in Rust, that

has very strict semantics. By default, the compiler will try to help by capturing the variable in the most

lax way possible. For example, if a reference is enough, only that will get captured. Another rule is that

if the value can be copied the compiler will copy it. In the cases when neither of the fixes are possible,

we have to specify that we want to move ownership of every value to the closure by defining it like:

move || .

B.2 Generics

Generics works like in any other programming language. The main difference is that lifetimes (subsec-

tion B.1.1) and type aliases are mixed together in the generic parameter list. See Listing B.4 for an

example.

1 pub type PResult<’a, O> = Result<(Information<’a>, O), PError>;

2

3 pub trait Parser<’a, O>: Copy {

4 fn parse(&self, info: Information<’a>) -> PResult<’a, O>;

5 }

6

7 impl<’a, O, T> Parser<’a, O> for T

8 where T: Copy + Fn(Information<’a>) -> PResult<’a, O>

9 {

10 fn parse(&self, info: Information<’a>) -> PResult<’a, O> {

11 self(info)

12 }

13 }

Listing B.4: Example where lifetime parameters are used alongside generics.

Both when declaring, implementing and naming types, both lifetimes and generic parameters have to

be provided. However, the Rust compiler is intelligent enough to guess them in most of the situations.

The last important point is that generics are included in the so called “zero-cost abstractions”. It

means that, even though, they are a higher level construct which usually translates into a performance

penalty, Rust’s generics work at the same speed as if they were not used.

50 Formal design and implementation of a programming language based on facets

C
Advanced topics on parser
implementation

This section will cover advanced topics on the parser implementation. The discussions will dive deep

into some niche topics which are not essential but, nevertheless, provide interesting insights. We will

discuss the two main conceptual problems we encountered in the implementation. The first section,

section C.1, answers the question of why parser combinators use generic parameters, and simultane-

ously unveils the Parser trait. In the second section, section C.2, we will explain how the syntactic rules

were chosen alongside several variations and the troubles they entail.

C.1 The Parser trait

In order to understand the parser trait, first we have to digress to really understand what closures really

are.

C.1.1 What is really a closure?

We explained what a closure was in section 1.4 and even touched on some points such as ownership

of the captured values. In this chapter we are interested on how to represent a closure in memory and

how that affects its type.

First we need to know how function calls are represented in memory. In an overly simplistic approach

we could say that memory is divided into the heap and the stack. Each time you call a function a stack

frame is created and “pushed” onto the stack and, once you return, the memory is freed and the

previous frame is used. Technically, frames are logical units and run continuously on the stack, have a

look at Figure C.1 for a close up of one. The complete stack is composed of several frames on top of

each other.

Let’s take an example program (Listing C.1) with nested functions and imagine that the execution

has reached line 8 and we are about to return the closure. Then, the stack would look like Figure C.2.

51

Advanced topics on parser implementation

local variable 2

local variable 1

previous stack pointer

return address

parameter 1

parameter 2

...

...

Stack
grows

Figure C.1: Close up of the stack frame of a function (x86 convention).

1 let a = function() {

2 let b = function() {

3 let local_var_1 = 41;

4 let local_var_2 = 1;

5 let closure = function() {

6 print(local_var_1 + local_var_2);

7 };

8 closure

9 };

10 };

Listing C.1: Example program with nested closures.

....

stack frame function B

stack frame function A
local

variable
local

variable
parameter ...

local
variable

local
variable

local
variable

...

Closure references

Stack pointer is
here

Figure C.2: The stack as of line 8 in Listing C.1.

Take note that the closures references two variables in the current stack frame of function b. We

are going to return the closure and it might be called anywhere on the program, so those values have

to persist. However, as we explained, when we return, we pop the trace from the stack, see Figure C.3.

52 Formal design and implementation of a programming language based on facets

C.1. The Parser trait

....

Freed memory

stack frame function A
local

variable
local

variable
parameter ...

Closure references

Stack pointer is
here

! !
Figure C.3: The stack after returning from function b in Listing C.1.

The solution and the insight is that a closure is not a function in memory because it stores the

values internally alongside the pointer to its code; it is a more complex data structure.

C.1.2 Passing arguments to functions

We are ready for the last piece of the puzzle. In the last section we saw what happens when you

call a function. We missed one piece and that is that the stack traces’ offsets are the same on every

invocation; for example, local_var_1 is always at position 8. Think that the function is compiled once

so the offsets cannot change from invocation to invocation.

The implications of this are huge. For us, the most important thing is that, in Rust, all the arguments

must have a concrete size at compile time. Contrast that with Java, where if you ask for a class A, you

can get any subclass with potentially more fields and different size. The reason is that Java uses a GC

(section 1.4), so every value 1lives on the heap and we are just passing pointers around, which are

always the same size. In Rust, if you ask for a type, you can only get that one type because we are

passing it directly through the stack, so it has to have the same size because the offsets have to match.

It is utterly fascinating that when creating a language, the chosen technique for memory manage-

ment has ramifications on the apparently unrelated type system.

C.1.3 The Fn trait vs the fn type

In Rust, functions have a type and closures do not. Closures implement a Trait called Fn 2. For exam-

ple, Fn(usize, String) -> String is a Trait while fn(usize, String) -> String is a type. Why is

that so? It is because closures have different size depending on the environment they capture while

1That is not exactly right. For example, there are primitive types such as int that are not boxed, they are used directly.

Ángel Alberto Carretero Ramos 53

Advanced topics on parser implementation

functions occupy the same always, mystery unveiled.

C.1.4 The Copy trait

Lastly, we have to explain one more thing regarding Copy trait (section B.1.3). There is a massive

limitation in using closures as parsers in Rust and that is that we cannot do things like:

1 pub fn my_extrange_combinator<’a, O, F>(parser: F) -> impl Parser<’a, O>

2 where F: Parser<’a, O>,

3 O: PartialEq

4 {

5 and(parser, parser)

6 }

Listing C.2: Attempting to call a combinator with the same parser twice.

Because closures might not be Copy 3which means that they cannot be cloned transparently, see sec-

tion B.1.3 for more details.

C.1.5 The Parser trait

We are now ready to understand the Parser trait:

1 pub type PResult<’a, O> = Result<(Information<’a>, O), PError>;

2

3 pub trait Parser<’a, O>: Copy {

4 fn parse(&self, info: Information<’a>) -> PResult<’a, O>;

5 }

6

7 impl<’a, O, T> Parser<’a, O> for T

8 where T: Copy + Fn(Information<’a>) -> PResult<’a, O>

9 {

10 fn parse(&self, info: Information<’a>) -> PResult<’a, O> {

11 self(info)

12 }

13 }

Listing C.3: Parser trait and implementation for closures/functions.

2This is an oversimplification. To be precise, there are three traits: Fn, FnOnce and FnMut. For more information, check [11] (chapter on

Advanced Closures).
3Incidentally, this was a big limitation for me using the nom library. It is an act of balancing because if you make Parser implement Copy you

have to restrict yourself to only a subset of closures. For my use case, it was clearly advantageous, but nom chooses to support the bigger set at this

expense.

54 Formal design and implementation of a programming language based on facets

C.2. Grammar rules variations and effect on performance

We are saying that we want Parser to always be Copy. Then, we implement it for all the closures that

are themselves Copy.

Why do we even have a trait? Because a trait brings us the flexibility of changing it in one place

without having to change the signature of every function. And, even if we did not have a trait, we would

have to still use generic parameters but with Fn instead.

C.2 Grammar rules variations and effect on performance

The first thing we have to take into account when designing grammar rules is that parser combinators

are not left recursive. In layman terms, it means that a rule cannot start with the rule itself. If we

think about function recursion, it makes sense because the parser, which is a function, would call itself

indefinitely crashing the program. The downside is that left recursion is often the most natural way of

codifying rules, and we have to circumvent this limitation. For example, if we were to code the rules for

binary expressions, we would produce something like this:

1 // Ladder

2 tag ::= tag "@" tag | logic_or ;

3 logic_or ::= logic_or "or" logic_or | logic_and ;

4 logic_and ::= logic_and "and" logic_and | equality ;

5 equality ::= equality ("==" | "!=") equality | comparison ;

6 comparison ::= comparison ("<=" | ">=" | "<" | ">") comparison | term ;

7 term ::= term ("+" | "-") term | factor ;

8 factor ::= factor ("*" | "/") factor | unary ;

Listing C.4: Rules for binary expressions, left recursive.

Observe that we are codifying the precedence of the different operators in the rules themselves. We

are building a “ladder” in the sense that if a rule fails, it tries to match the next one going down. That

means that the highest precedence is the lowest rule.

If we were to translate Listing C.4 into a non left recursive form, we would produce something like

this:

1 // Ladder

2 tag ::= logic_or ("@" logic_or)+ | logic_or ;

3 logic_or ::= logic_and ("or" logic_and)+ | logic_and ;

4 logic_and ::= equality ("and" equality)+ | equality ;

5 equality ::= comparison (("==" | "!=") comparison)+ | comparison ;

6 comparison ::= term (("<=" | ">=" | "<" | ">") term)+ | term ;

7 term ::= factor (("+" | "-") factor)+ | factor ;

8 factor ::= unary (("*" | "/") unary)+ | unary ;

Listing C.5: Rules for binary expressions, non left recursive.

Ángel Alberto Carretero Ramos 55

Advanced topics on parser implementation

Even though this set of rules works, during the development it was the ultimate culprit of long

execution times. To put that into perspective, it took about 3 minutes to run the test suite while it

currently takes only a few milliseconds. Even though it is an obvious mistake, it took a lot of debugging

to locate it. The purpose of the rest of this section, as the title indicates, is to explain that although two

set of rules can produce the same grammar, they can have vastly different performance.

The problem with Listing C.5 is better seen through an example. If we tried to parse a very simple

expression, 2 == 2 , we would get the stack trace in Figure C.4, where the number of stack frames,

or function calls, growths exponentially.

or clause
tag

logic_or

logic_and

equality

comparison

term

factor

unary

comparison

term

factor

unary

equality

...

logic_and

equality

...

logic_or

logic_and

equality

...

or clause

or clause

Figure C.4: Simplified stack frame for parsing 2 == 2 using Listing C.5. Green: parser returned

successfuly in the main clause. Red: parser failed the main clause, tries the alternative.

Fortunately, once the culprit was found, a new set of rules was easily produced:

1 // Ladder

2 tag ::= logic_or ("@" logic_or)* ;

3 logic_or ::= logic_and ("or" logic_and)* ;

4 logic_and ::= equality ("and" equality)* ;

5 equality ::= comparison (("==" | "!=") comparison)* ;

6 comparison ::= term (("<=" | ">=" | "<" | ">") term)* ;

7 term ::= factor (("+" | "-") factor)* ;

8 factor ::= unary (("*" | "/") unary)* ;

Listing C.6: Final set of rules for binary expressions.

In Listing C.6, if we match a rule down the ladder but not the current one, we simply return the result

instead of nothing. This happens because the glob (*) matches 0 or more occurrences which means

that a single operand is a valid result. In contrast, before, we used the plus (+) operator that required at

56 Formal design and implementation of a programming language based on facets

C.2. Grammar rules variations and effect on performance

least one match. When it failed, we had to start all over in the topmost level by going into the other side

of the rule.

Ángel Alberto Carretero Ramos 57

D
CLI usage

The prerequisites are having rust nightly and cargo installed. The interpreter is built like any cargo

project:

1 cargo build --release

From here on, either continue to use cargo to run the interpreter, or locate the executable. Running it

with the --help flag will return the usage (listed below).

1 # Both are equivalent

2 cargo run --release -- --help # Notice the extra -- that delimits the flags

3 target/release/dyntypes --help

dyntypes

USAGE:

dyntypes [FLAGS] <INPUT>

FLAGS:

--graph Outputs the AST to ast.dot

-h, --help Prints help information

-V, --version Prints version information

ARGS:

<INPUT> Sets the input file to use

Per the usage, in order to run code you only have to pass the filename,

1 # Both are equivalent

2 cargo run --release -- ./program.in

3 target/release/dyntypes ./program.in

>>> <Program output>

59

CLI usage

Additionally, there is one available flag: --graph. Its purpose is to aid debugging by checking if the

parsing was correct. Its does so by graphing the program’s AST. The usage is as follows:

1 # Both are equivalent

2 cargo run --release -- --graph ./program.in

3 target/release/dyntypes --graph ./program.in

A file named ast.dot is created on the current directory. A number of DOT programs can be used to

render the AST; we show the simplest method for creating a png image:

1 dot -Tpng ast.dot -o ast.png

Lastly, you can find the test framework in test.py. The test cases and expected results can be

found under the directory tests. To run them, you must also have python installed in your system to

invoke the script:

1 python test.py

A typical output may look something like this:

Compiling the program...

100%| | 35/35 [00:00<00:00, 1312.87it/s]

--

Error 101: Probably panic.

Error 121: Probably parse error.

--

Case tests/generics

Return code 1, expected 0

>>>>>>>>>>>

b’working\n’

<<<<<<<<<<<

b’’

Failed 1 of 35.

where we can see that a test failed because the neither the output nor the return code matched the

expected. For documentation on how to define new tests or how the framework works, consult the

test.py script directly.

60 Formal design and implementation of a programming language based on facets

	Introduction and Background
	Problem
	Facets
	Expressiveness and performance considerations
	How do facets solve the original problem?

	Related work
	Background: Programming Language Theory Concepts
	Objectives
	Document organization

	Design of the language syntax
	Syntax rules
	Design decision: Null
	Basic usages
	Original problem revisited

	Parsing
	Simple parsers
	Some combinators
	Advanced combinators: Macros over the AST

	Complete example: Parsing comments and whitespace

	Typechecking
	Rules
	Simple typechecking
	Facets

	Implementation
	Case study: Typechecking a facet initialization
	Case study: Return statements

	Interpreter
	Rules
	Implementation
	Case study: Environment
	Case study: Facet fields
	Case study: Return statements

	Implementation and validation
	Validation

	Conclusions and future work
	Future work: generics

	Bibliography
	Appendices
	Formal grammar rules
	Introduction to Rust
	References
	Lifetimes
	Borrow checker
	Traits

	Generics

	Advanced topics on parser implementation
	The Parser trait
	What is really a closure?
	Passing arguments to functions
	The Fn trait vs the fn type
	The Copy trait
	The Parser trait

	Grammar rules variations and effect on performance

	CLI usage

